Proof Engineering for Program Logics in Isabelle/HOL

Lecture 3: Introduction to Coinduction in Isabelle

Chelsea Edmonds
University of Western Australia
chelsea.edmonds@uwa.edu.au

ANU Logic Summer School 2025

Course Overview

Lectures:

- Basic reasoning on programs in Isabelle/HOL
- Program Logics: Hoare and Rely-Guarantee
- A side quest: Intro to Coinduction in Isabelle/HOL
- Formally defining Rely-guarantee reasoning
- Modular Proofs in Isabelle/HOL

Mix of theory and Isabelle/HOL implementations/proofs.

Lecture 3 Overview

- Revisiting Induction
- Induction to Coinduction
- Coinductive definitions in Isabelle
- Proofs using coinduction.

Induction to Coinduction

Back to Induction

Last week we learnt about:

Standard inductive data types in Isabelle/HOL

```
datatype 'a list = Nil | Cons 'a "'a list"
```

Inductive predicates

```
inductive subseq :: "'a list ⇒ 'a list ⇒ bool" where
   ss_empty: "subseq [] xs"
| ss_keep: "subseq xs ys ⇒ subseq (x#xs) (x#ys)"
| ss_drop: "subseq xs ys ⇒ subseq xs (y#ys)"
```

Of course, our semantics and hoare logic definitions are also examples of inductive predicates!

Breaking Down Induction

So what actually is an inductive definition?

Breaking Down Induction

Inductive definitions build up a set incrementally, starting from a base case.

Think of it as an *iterative* process:

- We start with the empty set
- We keep adding elements according to the rules of the inductive definition.
- Until we reach a *fixed point* i.e. no new elements can be added.

i.e. an inductive definition is the smallest set closed forward under its defining rules.

Breaking Down Induction: Example

Lets take a (slightly simpler) inductive definition for list prefixes.

```
inductive prefix :: "'a list ⇒ 'a list ⇒ bool" where
  pempty: "prefix [] xs"
| pkeep: "prefix xs ys ⇒ prefix (x#xs) (x#ys)"
```

could more traditionally be defined by the following rules using inference rule notation:

$$\frac{prefix \ xs \ ys}{prefix \ [] \ xs} (pempty) \qquad \qquad \frac{prefix \ xs \ ys}{prefix \ (x \# xs) \ (x \# ys)} (pkeep)$$

Breaking Down Induction: Example

$$\frac{prefix \ xs \ ys}{prefix \ (x \# xs) \ (x \# ys)} (pkeep)$$

In this example, we build up a set of list prefixes by:

- Starting with the empty set
- Adding the empty list
- Incrementally apply the pkeep rule to create more list prefixes.
- Until we reach a fixed point i.e. no new prefixes can be added.

We go from premises (above the line) to conclusions.

Induction to Coinduction

Why Coinductive?

Coinductive definitions are traditionally used for defining and reasoning on possibly infinite data structures, e.g.:

- Streams
- Lazy lists
- Infinite trees
- Extended natural numbers

Coinductive Example

Consider Lazy Lists (i.e. possibly infinite lists).

Say we defined lazy prefix ordering inductively as before:

$$\frac{lprefix xs ys}{lprefix (x \# xs)(x \# ys)} (lpkeep)$$

What's the issue with this approach?

Coinductive Example.

Consider Lazy Lists (i.e. possibly infinite lists).

Say we defined lazy prefixes inductively as before:

$$\frac{1}{Iprefix [] xs} (ssl_empty)$$

$$\frac{\textit{lprefix} \ \textit{xs} \ \textit{ys}}{\textit{lprefix} \ (\textit{x}\#\textit{xs}) \ (\textit{x}\#\textit{ys})} (\textit{ssl_keep})$$

It restricts us to only finite prefixes! No infinite list would be a prefix of any (possibly infinite) list, as an infinite list can't be built up from the base case.

The Intuition of Coinduction

Coinduction can be thought of as the dual of induction. We *flip* our direction of thinking:

- We start with the set of all possible objects (including infinite ones)
- We remove elements that contradict our coinductive rules.

i.e. a coinductive definition is the *largest* set closed *backward* (or consistent) under its defining rules.

Coinductive Example

Using a coinductive lazy prefix definition:

$$\frac{lprefix xs ys}{lprefix (x \# xs) (x \# ys)} (lpkeep)$$

Backward closure goes from the conclusion to the premises.

- We start with the set of all possible lazy lists
- We remove any lists that don't backwards satisfy one of the rules.

All the finite prefixes are included, but also potentially infinite ones! Thinking about our inferences rules - we allow infinite proof derivation trees.

Induction vs Coinduction

Induction

- Smallest set closed forward under the rules
- Build up incrementally moving from premises to conclusions
- Finite derivation trees: i.e. what can be proved using a finite number of rule applications.

Coinduction

- Largest set closed backwards under the rules
- Remove inconsistent elements from set of all objects.
- Possibly infinite derivation trees: i.e. what can be proved using an infinite number of rule applications.

Coinduction in Isabelle

In Isabelle in addition to datatypes we have the codatatypes for defining coinductive types such as lazy lists.

Standard list datatype definition using datatype

```
datatype 'a list = Nil | Cons 'a "'a list"
```

i.e. all lists that can be constructed in a finite number of steps using Cons from the empty list Nil

Lazy list datatype definition using codatatype

```
codatatype 'a llist = LNil | LCons (lhd : 'a) (ltl : "'a llist")
```

i.e. everything that is Nil or that can be *deconstructed* into a head and tail element.

Coinduction in Isabelle

Similarly, we have a coinductive definition as a dual to the inductive definition.

• Standard list prefix inductive definition:

```
inductive prefix :: "'a list ⇒ 'a list ⇒ bool" where
  pempty: "prefix [] xs"
| pkeep: "prefix xs ys ⇒ prefix (x#xs) (x#ys)"
| ss_drop: "prefix xs ys ⇒ prefix xs (y#ys)"
```

Lazy list prefix coinductive definition:

```
coinductive lprefix :: "'a llist ⇒ 'a llist ⇒ bool" where
  lpempty: "lprefix [] xs"
| lpkeep: "lprefix xs ys ⇒ lprefix (x#xs) (x#ys)"
```

We also have corecursive, primcorec, etc.

Practical Coinduction proofs

Revisiting Inductive Proofs

An inductive definition gives us several useful proof principles:

- Introduction rules.
- Case Distinction (elimination) rules
- Induction principle.

Revisiting Inductive Proofs: Introduction Rules

Using our prefix example again, the original inference rules are actually our *introduction* rules:

$$\frac{prefix \ (pempty)}{prefix \ [] \ xs} (pempty) \qquad \qquad \frac{prefix \ xs \ ys}{prefix \ (x\#xs) \ (x\#ys)} (pkeep)$$

Revisiting Inductive Proofs: Case Distinction

The case distinction rule arises from realising that wherever prefix xs xs' holds, it must have been obtainable by one of the previous rules.

prefix
$$bs$$
 bs'

$$\forall as. bs = [] \land bs' = as \longrightarrow P \ bs \ bs'$$

$$\forall as \ as' \ a. \ bs = a\#as \land bs' = a\#as' \land \text{prefix as } as' \longrightarrow P \ bs \ bs'$$

$$P \ bs \ bs'$$
(Cases)

Revisiting Inductive Proofs: Case Distinction

The case distinction rule arises from realising that wherever prefix xs xs' holds, it must have been obtainable by one of the previous rules.

prefix
$$bs\ bs'$$

$$\forall as.\ bs = [] \land bs' = as \longrightarrow P\ bs\ bs'$$

$$\forall as\ as'\ a.\ bs = a\#as \land bs' = a\#as' \land \mathsf{prefix}\ as\ as' \longrightarrow P\ bs\ bs'$$

$$P\ bs\ bs'$$
(Cases)

So if all cases imply a predicate P on bs and bs', then P bs bs' must hold.

Revisiting Inductive Proofs: Inductive Principle

The standard inductive principle enables us to show *every element* of an inductively defined set satisfies some condition, if that condition holds under each rule in our inductive definition.

```
prefix bs\ bs'
\forall as.\ P\ []\ as
\frac{\forall as\ as'\ a.\ prefix\ as\ as'\ \land\ P\ as\ as'\ \longrightarrow\ P\ (a\#as)\ (a\#as')}{P\ bs\ bs'} (Induct)
```

So if P holds under each rule of our prefix inductive definition, and we know prefix bs bs' (i.e. bs is an element of our inductively built set of prefixes of bs'), then P must also hold on bs bs'!

Coinductive Proofs

Dually, our coinductive definition provides the following rules:

- Introduction rules.
- Case Distinction (elimination) rules
- Coinductive rule.

The introduction and case distinction rules remain the same as the inductive variant.

Coinductive Proofs: Coinductive Principle

Where as an inductive principle shows that if a condition holds under each rule, every element of the inductive set must satisfy it, the coinductive principle is the reverse - showing an element is in the coinductive set.

$$P \ cs \ cs'$$
 $\forall bs \ bs'. \ P \ bs \ bs' \longrightarrow (\exists as. \ bs = [] \land bs' = as) \lor$

$$\frac{(\exists a \ as \ as'. \ bs = a\#as \land bs' = a\#as' \land P \ as \ as')}{\mathsf{prefix} \ cs \ cs'} (\mathsf{Coinduct})$$

Coinduction in Isabelle: Proofs

Like inductive, coinductive automatically generates our proof rules: introduction, case distinction, and coinductive principle (and similarly for (co)datatypes).

However, there is a little more automated support for *applying* an inductive rule in Isabelle. Coinduction sometimes still requires a little more manual support.

Coinduction and Induction

as Fixed Points

Well-foundedness of our coinductive intuition

This idea of allowing *infinite* proof derivation trees may not feel particularly well-founded.

But it is indeed backed by fixed point theory.

Thinking about induction and coinduction via fixpoints makes:

- the duality of the ideas particularly clear.
- It formally clear where each of our proof rules (intro, case distinction, inductive principle, coinductive principle) comes from.

Induction and Coinduction as Fixed Points

Via the Knaster-Tarski theorem (lattice theory!), we can more formally think of:

- Induction as the least fixpoint
- Coinduction as the greatest fixpoint

See extra materials for more detail if interested.

Next Time

Next Lecture:

- Rely-Guarantee Semantics 3 ways.
- Soundness and Proof Engineering.

Isabelle exercises/extended work

- Andrei Popescu's excellent course on Coinduction (with examples in Isabelle): https://www.andreipopescu.uk/MGS2021/ISA_course.html
- Section 4 and 5 of the Isabelle (Co)datatypes tutorial
- The Coinductive AFP entry has numerous examples, including much more on lazy lists!
- This is one (of many!) nice example in a blog post comparing some coinductive definitions across Rocq, Isabelle, and Agda: https://www.joachim-breitner. de/blog/726-Coinduction_in_Coq_and_Isabelle