Proof Engineering for Program Logics in Isabelle/HOL

Lecture 2: Program Logics

Chelsea Edmonds
University of Western Australia
chelsea.edmonds@uwa.edu.au

ANU Logic Summer School 2025

Course Overview

Lectures:

- Basic reasoning on programs in Isabelle/HOL
- Program Logics: Hoare and Rely-Guarantee
- A side quest: intro to coinduction in Isabelle/HOL
- Formally defining Rely-guarantee reasoning
- Modular proofs in Isabelle/HOL

Mix of theory and Isabelle/HOL implementations/proofs.

Lecture 2 Overview

- What is a Program Logic?
- Hoare Logic: Intuition, Semantics, and Rules
- Hoare Logic: Soundness
- Hoare Logic in Isabelle
- Rely-Guarantee Logic

Acknowledgment: Hoare Logic Isabelle content inspired by Nipkow & Klein's Concrete Semantics textbook.

Program Logics: An Overview

What is a Program Logic?

A *program logic* is a formal language (based on mathematical logic) for expressing and proving various properties of programs.

Well-known examples

There are numerous existing program logics (and various extensions) that can target a variety of different program properties and environments. Some examples include:

- 1967 1969: Hoare Logic (or Floyd-Hoare Logic). [2]
- 1983: Rely-Guarantee Logic [3]
- 2000: Separation Logic [5]
- 2020: Incorrectness Logic [4]

Hoare Logic

Hoare Logic Intuition

For a sequential program, we can consider a *Hoare Triple*

$$\{P\} \subset \{Q\}$$

Where:

- *P* is a predicate that represents the *pre-condition*
- *Q* is a predicate that represents the *post-condition*
- *C* is the program.

The Hoare triple states that if the pre-condition P is satisfied on the initial program state, then if the program terminates, the post-condition Q will be satisfied.

Some Example Programs

Lets consider some basic example programs:

Listing 1: basic assignment

```
{ x = n }
x := x + 1
{ x = n + 1 }
```

Listing 2: basic swap

```
{ x = a \land y = b }
t := x;
x := y;
y := t
{ x = b \land y = a }
```

Partial vs Total Correctness

Our Hoare triple definition is dependent on *termination*. Hence it represents *partial correctness*.

Total correctness ($[P] \ C \ [Q]$) has the following two conditions:

- If a program C starts in a state satisfying P, then the program terminates
- When the program terminates, the state satisfies Q.

In other words:

 $Total\ Correctness = Termination + Partial\ Correctness$

More examples...

Listing 3: Terminating Loop

```
{ n >= 0 }
while n > 0 do
    n := n - 1
{ n = 0 }
```

Partial Correctness: ✓

Total Correctness: ✓

Listing 4: Divergent Loop

```
{ x >= 0 }
while x >= 0 do
    x := x + 1
{ x < 0 }</pre>
```

Partial Correctness: ✓

Total Correctness: ×

We'll focus on partial correctness for now.

A More Formal Semantics

More formally, for partial correctness, our Hoare triple is valid (\models) according to the following definition:

$$\models \{P\}C\{Q\} \longleftrightarrow (\forall s \ t. \ P \ s \land (c,s) \rightarrow^* (c',t) \land \mathsf{final}\ (c',t) \longrightarrow Q \ t)$$

Syntactic vs Semantic Assertions

In our examples so far we've been using syntactic assertions, i.e.

$$\{x = n\}$$

is an assertion on a syntactic expression, such as bexp, which is nice and intuitive for simple examples.

However, in our formal semantics, it's it becomes much easier to reason using *semantic* assertions, i.e. predicates over a program state s. For example, the syntactic assertion above corresponds to the semantic assertion:

$$\{\lambda s.s(x)=n\}$$

A Hoare Logic Proof System

We can use inference rules to specify a formal proof system for Hoare logic.

Under this proof system, we use:

$$\vdash \{P\} \ C \{Q\}$$

means the Hoare triple $\{P\}$ C $\{Q\}$ can be derived.

Some Useful Relation Notation

Some notes on notation, assuming P and Q are unary predicates.

- We use < and > to be the standard ordering on predicates. e.g. P < Q means that \forall s. P s \longrightarrow Q s
- \sqcap and \sqcup denote the infimum and supremum in the lattice of predicates, which are component-wise conjunction and disjunction. e.g. $(P \sqcap Q) s = P s \land Q s$

Later we'll also be using binary predicates, e.g. R.

- refl R means R is a reflexive relation, i.e. $\forall s \ s'.R \ s \ s' \longleftrightarrow R \ s' \ s$
- stable P R means P is stable with respect to R, i.e. $\forall s$ s'.P $s \land R$ s s' \longrightarrow P s'

A Hoare Logic Proof System

$$\frac{\vdash \{P\} \operatorname{done} \{P\}}{\vdash \{P\} \operatorname{done} \{P\}}(\operatorname{\mathsf{DoneH}})} \qquad \frac{\vdash \{P\} c_1 \{P'\} \qquad \vdash \{P'\} c_2 \{Q'\}}{\vdash \{P\} \operatorname{\mathsf{seq}} c_1 c_2 \{Q\}}(\operatorname{\mathsf{SeqH}})}$$

$$\frac{\vdash \{P \sqcap (\operatorname{\mathsf{bval}} t)\} c_1 \{Q\} \qquad \vdash \{P \sqcap (\neg (\operatorname{\mathsf{bval}} t))\} c_2 \{Q\}}{\vdash \{P\} \operatorname{\mathsf{if}} t c_1 c_2 \{Q\}}(\operatorname{\mathsf{IfH}})}$$

$$\frac{\vdash \{P \sqcap (\operatorname{\mathsf{bval}} t)\} c \{P\}}{\vdash \{P\} \operatorname{\mathsf{while}} t c \{P \sqcap \neg \operatorname{\mathsf{bval}} t\}}(\operatorname{\mathsf{WhileH}})}$$

Hoare Logic: Assignment Rule

Let's take a closer look at the Assignment Rule:

$$\frac{1}{\vdash \{(\lambda s. \ P \ s[a/x])\} \ x ::= a \{P\}} (AssignH)$$

This can feel a little backwards, modifying the pre-condition instead of the post-condition. Why wouldn't the other way around work?

$$\frac{1}{\vdash \{P\} \times ::= a \{\lambda s. \ P \ s[a/x]\}} (AssignHBad)$$

Hoare Logic: Assignment Rule

Let's take a closer look at the Assignment Rule:

$$\frac{1}{\vdash \{(\lambda s. \ P \ s[a/x])\} \ x ::= a \{P\}} (AssignH)$$

This can feel a little backwards, modifying the pre-condition instead of the post-condition. Why wouldn't the other way around work?

$$\overline{\vdash \{P\} \times ::= a \{\lambda s. \ P \ s[a/x]\}}$$
 (AssignHBad)

We could use it to prove a triple like this is valid!

$${x = 0} x := 1{1 = 0}$$

The While Rule

$$\frac{\vdash \{P \sqcap (\mathsf{bval}\ t)\}\ c\ \{P\}}{\vdash \{P\}\ \mathsf{while}\ t\ c\ \{P\sqcap\neg\mathsf{bval}\ t\}} (\mathsf{WhileH})$$

In this rule P acts as a loop invariant.

- It is true at the beginning and end of every loop iteration
- If the loop terminates, the condition t must be false.

The Consequence Rule

$$\frac{\vdash \{P'\} c \{Q'\}}{\vdash \{P\} c \{Q\}} \qquad \qquad Q' \leq Q \qquad \qquad (\mathsf{MonoH})$$

Figure 1: Consequence Rule

This allows us to

- Strengthen the pre-condition
- Weaken the post-condition.

Deriving Rules

We can derive rules, that might be easier to work with. For example, here is an alternate rule for Assign:

$$\frac{\forall s.P \ s \longrightarrow Q \ s[a/x]}{\vdash \{P\} \ x ::= a \{Q\}} (AssignH')$$

Figure 2: Derived Assign Rule

This is derived via the consequence rule (strengthen the precondition), and original AssignH rule.

And for while:

Soundness and Completeness

There are two important properties we typically want to consider when developing a program logic proof system w.r.t. an operational semantics.

First is Soundness: if a triple is derivable, then it is also valid.

$$\vdash \{P\} c \{Q\} \longrightarrow \models \{P\} c \{Q\}$$

Next is Completeness: if a triple is valid, then it is also derivable.

$$\models \{P\} c \{Q\} \longrightarrow \vdash \{P\} c \{Q\}$$

We'll focus on soundness proofs in this course. Completeness requires the introduction of the weakest pre-condition, which is left as further reading.

Rely-Guarantee Logic

Additional Concurrency Considerations

For reasoning on the correctness of concurrent programs, we also need to consider:

- What do we require of the environment for a given sequential command to hold.
- How could our sequential command *impact* the environment.

The Rely-Guarantee Approach

Rely-Guarantee Logic extends Hoare Logic to reason about concurrent programs:

$$\{P,R\}\ C\ \{G,Q\}$$

Where C, P and Q are as before, and:

- *R* a binary predicate representing the *rely-condition*.
- *G* is a binary predicate representing the *guarantee-condition*.

Our triple now also requires that the environment only makes changes to the state that satisfy the rely-condition R, and that the program only makes changes to the state that satisfy the guarantee-condition G.

We focus on partial correctness again.

The Rely-Guarantee Approach

Slightly more formally, consider a command whose execution trace has environment steps $\epsilon(\sigma_i, \sigma_{i+1})$ and program steps $\tau(\sigma_i, \sigma_{i+1})$, where σ_i represents the state after i steps:

$$\sigma_0 \dots \tau(\sigma_i, \sigma_{i+1}) \dots \epsilon(\sigma_j, \sigma_{j+1}) \dots \sigma_f$$

 $\{P,R\} \subset \{G,Q\}$ holds means:

- $P \sigma_0$ holds
- $Q \sigma_f$ holds if the command terminates
- Every environment step ϵ satisfies the rely condition, i.e. $R \sigma_j \sigma_{j+1}$
- Every program step au satisfies the guarantee condition, i.e. $G \sigma_i \sigma_{i+1}$

An (Intuitive) Assignment Example

Consider the below Hoare triple:

Listing 5: basic assignment RG

```
{ x = 0 }
x := x + 1
{ x = 1 }
```

Say this command is running in a parallel environment. For it to hold under our RG logic, we additionally:

- rely on the condition that x is not changed by the environment.
- guarantee that our program at most increments x by 1.

A rely-guarantee proof system

stable
$$QR$$
 $P \leq Q$ $\vdash \{P,R\} \text{ done } \{G,Q\}$ (DoneRG)

$$\frac{\vdash \{P,R\} c_1 \{G,P'\} \qquad \vdash \{P',R\} c_2 \{G,Q\} \qquad \text{refl } G}{\vdash \{P,R\} \text{seq } c_1 c_2 \{G,Q\}}$$
(SeqRG)

A rely guarantee proof system

$$\frac{\vdash \{P \sqcap (\mathsf{bval}\ t), R\} c \{G, P\}}{\mathsf{stable}\ P R} \frac{P \sqcap (\neg (\mathsf{bval}\ t)) \leq Q}{\mathsf{stable}\ P R} \frac{\mathsf{refl}\ G}{\vdash \{P, R\} \mathsf{while}\ t\ c \{G, Q\}}$$
(WhileRG)

The Parallel Rule

The parallel rule is our critical new rule in the rely-guarantee reasoning proof system. It states for a parallel step to be derived:

- Both c1 and c2 satisfy their respective RG tuples.
- The precondition is equivalent to (or stronger) then the conjunction of P1 and P2
- ullet The postcondition is equivalent to (or weaker) than the conjunction of Q1 and Q2
- ullet The guarantee condition is equivalent to (or weaker) than the disjunction of G1 and G2
- G2 is compatible with R1
- G1 is compatible with R2

An example: Rely-Guarantee Conditions

Consider *c*1 where:

•
$$G1 s s' \equiv s y = s' y$$

•
$$R1 s s' \equiv s' x < s x$$

and c2 where:

•
$$G2 s s' \equiv s' x < s x$$

•
$$R2 s s' \equiv s' y \geq s y$$

Clearly we have that:

$$G2 s s' \longrightarrow R1 s s' \wedge G1 s s' \longrightarrow R2 s s'$$

So *c*1 and *c*2 could run in parallel with no interference issues.

The Rely-Guarantee Consequence Rule

$$\frac{ \vdash \{P',R'\} c \{G',Q'\} \quad P \leq P' \quad R \leq R' \quad G' \leq G \quad Q' \leq Q}{ \vdash \{P,R\} c \{G,Q\}}$$
(MonoRG)

Figure 4: Rely-Guarantee Consequence Rule

Rely-Guarantee Semantics?

Ok, so we have a proof system - but what about our formal Rely-Guarantee semantics? i.e. how do we define:

$$\models \{P,R\} c \{G,Q\}$$

Concurrency introduces some challenges for a formal definition:

- How do we model environment vs program steps?
- How do we capture the rely/guarantee conditions?

We hinted out this with our slightly more formal definition earlier.

Rely-Guarantee Semantics Approaches

Multiple approaches exist to address these challenges, including:

- Trace-Based
- Reachability
- Inductive
- Coinductive?

We'll discuss these in more detail in Lecture 4.

Note: other approaches to rely-guarantee reasoning also exist, including a more algebraic refinement calculus style of reasoning by Hayes et al [1], and extensions such as total correctness and relational post-conditions.

Next Time

Next Lecture: A side quest into coinduction!

- What is coinduction?
- How does it relate to inductive principles?
- How do we work with coinduction in Isabelle?
- We'll return to Rely-Guarantee in Isabelle in Lecture 4.

Isabelle exercises/extended work

Hoare Logic is covered in Chapter 12 of the Concrete Semantics Textbook.

- Try out some of the exercises from section 12.1/12.2
- Read up on weakest pre-conditions and potential for automation (section 12.4)

References i

Ian J. Haves and Cliff B. Jones.

A guide to rely/guarantee thinking.

In Jonathan P. Bowen, Zhiming Liu, and Zili Zhang, editors, Engineering Trustworthy Software Systems, pages 1-38, Cham, 2018, Springer International Publishing.

C. A. R. Hoare.

An axiomatic basis for computer programming. Commun. ACM, 12(10):576-580, October 1969.

Specification and design of (parallel) programs.

In IFIP Congress, 1983.

References ii

Peter W. O'Hearn.

Incorrectness logic.

Proc. ACM Program. Lang., 4(POPL), December 2019.

John C. Reynolds.

Separation logic: A logic for shared mutable data structures.

In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS '02, page 55–74, USA, 2002. IEEE Computer Society.