
06/04/2025

1

LECTURE 4: SEMANTICS AND ABSTRACTION
MODULAR PROOFS IN ISABELLE/HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Midlands Graduate School 2025 |

University of Sheffield

COURSE OVERVIEW

Lectures:

 Introduction to Proof Assistants

 Formalising the basics in Isabelle/HOL

 Introduction to Isar, more types, Locales and Type-classes

 Case studies:

 Formalising Mathematics: combinatorics & advanced locale reasoning
patterns

 Semantics, Abstraction, PL: Formalising semantics, program
properties, and introducing modularity/abstraction.

Example Classes:

 Isabelle exercises based on the previous lecture

 Will be drawing from the existing Isabelle tutorials/Nipkow’s

Concrete Semantic Book, as well as custom exercises (e.g. for

locales).

A practical course on the

effective use of the

Isabelle/HOL proof assistant

in mathematics and

programming languages

1

2

06/04/2025

2

LECTURE 4

OVERVIEW

Yesterday: mathematical formalisations/case-study

TODAY:

 Program verification and proof assistants

 Review: operational semantics

 Formalising semantics and working with basic properties

 Examples of locales/modularity in program verification

 Refinement

 Abstract reasoning

 Proof assistants in the wider-research landscape.

Modular proofs = an

engineering-like approach to

formalisation.

PROGRAM VERIFICATION & PROOF ASSISTANTS

3

4

06/04/2025

3

SOME WELL-KNOWN PROGRAM VERIFICATION EXAMPLES

The development of several proof assistants was (and continues to be) motivated by program

verification in many cases.

Some historical/long running applications

 Intel HOL-light (Floating Point verification): https://www.cl.cam.ac.uk/~jrh13/papers/sfm.pdf

 Sel4 (Isabelle): first formally verified operating system https://sel4.systems/About/

Currently

 Increasingly seen in industry (proof assistants are no longer just the domain of research!).

 Increasing interest in widely used frameworks (that help with modularity!) specific to program

verification e.g. Iris in Rocq. https://iris-project.org/

SEMANTICS REVIEW

5

6

https://www.cl.cam.ac.uk/~jrh13/papers/sfm.pdf
https://sel4.systems/About/
https://iris-project.org/

06/04/2025

4

SEMANTICS INTRODUCTION

 We’ll consider operational semantics, which can be given inductively:

 Specifying syntax

 Expression evaluation

 Command Execution

 Typically, properties are proven using induction.

 We won’t consider type checking in this lecture due to time, but also easy to do!

LET’S CONSIDER A BASIC SMALL-STEP SEMANTICS

 In the “Concrete Semantics” textbook (Nipkow & Klein, 2014), a basic “IMP” language is

introduced. We’ll use this as our initial case study today:

𝑐𝑜𝑚 ∷= SKIP 𝑠𝑡𝑟𝑖𝑛𝑔 ∷= 𝑎𝑒𝑥𝑝 𝑐𝑜𝑚 ; ; 𝑐𝑜𝑚 IF 𝑏𝑒𝑥𝑝 THEN 𝑐𝑜𝑚 ELSE 𝑐𝑜𝑚 WHILE 𝑏𝑒𝑥𝑝 DO 𝑐𝑜𝑚

7

8

06/04/2025

5

AND HERE’S AN EQUIVALENT BIG STEP SEMANTICS

 In the “Concrete Semantics” textbook (Nipkow & Klein, 2014), a basic “IMP” language is

introduced. We’ll use this as our initial case study today:

𝑐𝑜𝑚 ∷= SKIP 𝑠𝑡𝑟𝑖𝑛𝑔 ∷= 𝑎𝑒𝑥𝑝 𝑐𝑜𝑚 ; ; 𝑐𝑜𝑚 IF 𝑏𝑒𝑥𝑝 THEN 𝑐𝑜𝑚 ELSE 𝑐𝑜𝑚 WHILE 𝑏𝑒𝑥𝑝 DO 𝑐𝑜𝑚

SEMANTICS IN ISABELLE

9

10

06/04/2025

6

DATATYPES

 This is a basic command datatype in Isabelle (from the IMP language) with custom syntax

 We could either define elements of com abstractly or concretely:

Abstract Concrete

DATATYPES

 Say for example we wanted to also make our com definition more abstract.

 As Isabelle’s datatypes allow for parameterisation, it is quite easy to do this!

 In the example below, parametrised com with two additional type parameters instead of using a

more concrete aexp and bexp, noting Assign has also been generalised to an Atomic command.

11

12

06/04/2025

7

Inductive Set Approach

 After functions and datatypes, inductive definitions are one of the more valuable basic

features of Isabelle

 They generate numerous useful facts (induct rules, cases etc).

 For semantics, we typically use the predicate style (as we also are often dealing with quite

complex “triples”).

Inductive Predicate

ASIDE: INDUCTIVE SETS AND PREDICATES

SMALL STEP DEFINITION

 Like other definitions, inductive definitions allow us to specify special syntax.

13

14

06/04/2025

8

AUTOMATION AND RULE INVERSION

 We can make induction rules more useful by “reformatting it”, such as splitting into pairs:

 This adds the automatically generated “introduction” rules to the simp/intro sets (so tactics like

auto will automatically use them).

 Rule inversion: We can also use “inductive cases” to get our rule inversion facts of our semantics

for free!

A SAMPLE PROOF: DETERMINISTIC

 We can use our inductive rules easily as normal, and for simple facts the proofs can be very fast!

 DEMO! More of the IMP theory

15

16

06/04/2025

9

BUT WHAT ABOUT MODULARITY?

INTRODUCING A BASIC LOCALE

 A basic locale which represents a context that defines a “small step” semantics with a “final”

operator (i.e. representing a program terminating)

 Other useful definitions and properties can now be defined/proven locally.

17

18

06/04/2025

10

DEFINING ABSTRACT PROPERTIES

 Consider introducing a Hoare logic.

 We can abstractly define if a Hoare triple is valid without needing to know anything about the

semantics is valid. And therefore other useful lemmas on this definition!

Using locale

parameters

INHERITANCE

 We can use locales in all the same way we used them for mathematics, including inheritance.

 For example, we may want to abstractly reason on a semantics with a deterministic characteristic.

19

20

06/04/2025

11

INTERPRETING THE LOCALE (CONCRETE)

 Interpreting the Step locale with our concrete small-step semantics from earlier is trivial, as there

are no assumptions!

 Similarly, we can use our deterministic lemma from earlier to establish an interpretation for our

abstract deterministic locale

OR “REFINING” THE LOCALE

 As is typical of program verification, we often want to gradually refine our specification, rather than

jump straight to a concrete definition.

 This is an example of a locale which contains a concrete inductive definition of the semantics, that

assumes the existence of evaluation functions for arithmetic and Boolean expressions

 We use sublocale to establish the relationship

21

22

06/04/2025

12

MORE ADVANCED CASE STUDIES

EXAMPLE 1: MORE ABSTRACT PROPERTIES

Open abstract

context

New local definition of

desired property

Using locale

parameters

 In some recent joint work (w/ A. Popescu & J. Wright), we needed to abstractly reason on safety for

Rely-Guarantee reasoning, and could then show our theorem held for any small step semantics, as

well as interpret it for practical use.

23

24

06/04/2025

13

EXAMPLE 2: MODELLING ATTACKER LEVELS

 Information-flow security investigates if any information can leak from “high valued” variables to

“low security” variables through the execution of a program

 Relative security is a new concept that focuses on checking if an enhanced (e.g. optimized)

system, is secure with respect to the original (“vanilla”) system (i.e. if any leaks occur, they already

occurred in the basic version).

 We can model the idea of “leaks” in different ways, depending on how “abstract” a property we

want to reason on.

 For further details:

 See the original conference paper here (B. Dongol, M. Griffin, A. Popescu, J. Wright, 2024):

https://andreipopescu.uk/pdf/relative_security_CSF_2024.pdf

 The AFP Entry here: https://www.isa-afp.org/entries/Relative_Security.html

EXAMPLE 2: SETTING UP A TRANSITION SYSTEM

 The base transition system locale

 A transition system that includes the definition of finality as an assumption

25

26

https://andreipopescu.uk/pdf/relative_security_CSF_2024.pdf
https://www.isa-afp.org/entries/Relative_Security.html

06/04/2025

14

EXAMPLE 2: MODELLING ATTACKER LEVELS

 Leakage Model: Assumes the existence of some function describing leaks

 Attacker Model: Specifies the leak via function using more precise functions on secrets, attackers

and observers

EXAMPLE 2: MODELLING ATTACKER LEVELS

 Relative Security – uses two instances of attacker models.

 We restate all the parameters using for to keep our custom type names

27

28

06/04/2025

15

RELATIVE SECURITY FINAL LOCALE INFRASTRUCTURE

CONCLUSION

We’ve covered

 A fast-paced introduction to the basics of Isabelle/HOL!

 An in-depth discussion of type classes and locales, including

advanced reasoning patterns on locales.

 An introduction to reasoning on semantics in Isabelle/HOL

 Research case studies: formalized combinatorics, relative

security, refinement!

And along the way:

 Some history (proof assistants, formalised maths, verification)

 Insight and links to current research in proof assistants/formal

verification

Any feedback/questions/

thoughts? Feel free to get in

touch at:

c.l.edmonds@sheffield.ac.uk

29

30

mailto:c.l.edmonds@sheffield.ac.uk

06/04/2025

16

CONCLUSION

Your Challenge:

 Try out formalising your own work in Isabelle (or any other proof

assistant out there).

 Keep “software engineering” principles in mind:

 Verification is only half the goal

 Modular, reusable, and maintainable formal proof libraries can go
much further!

More Resources:

 To continue the work we started on semantics today, see Nipkow

and Klein’s book: http://concrete-semantics.org

 CPP/ITP are good starting points for formalisation focused

research.

 See more links at start of lecture 1!

Any feedback/questions/

thoughts? Feel free to get in

touch at:

c.l.edmonds@sheffield.ac.uk

31

http://concrete-semantics.org/
mailto:c.l.edmonds@sheffield.ac.uk

	Slide 1: Lecture 4: Semantics and Abstraction Modular Proofs in Isabelle/HOL
	Slide 2: Course OVERVIEW
	Slide 3: Lecture 4 Overview
	Slide 4: Program Verification & Proof Assistants
	Slide 5: Some Well-Known Program Verification Examples
	Slide 6: Semantics Review
	Slide 7: Semantics Introduction
	Slide 8: Let’s Consider a Basic Small-Step Semantics
	Slide 9: And here’s an Equivalent Big Step Semantics
	Slide 10: Semantics In Isabelle
	Slide 11: Datatypes
	Slide 12: Datatypes
	Slide 13: Aside: Inductive Sets and Predicates
	Slide 14: Small Step Definition
	Slide 15: Automation and Rule Inversion
	Slide 16: A Sample Proof: Deterministic
	Slide 17: But What About Modularity?
	Slide 18: Introducing a Basic Locale
	Slide 19: Defining Abstract Properties
	Slide 20: Inheritance
	Slide 21: Interpreting The Locale (Concrete)
	Slide 22: Or “REFINING” The LOCALE
	Slide 23: More Advanced Case Studies
	Slide 24: Example 1: More Abstract Properties
	Slide 25: Example 2: Modelling Attacker Levels
	Slide 26: Example 2: Setting UP A Transition System
	Slide 27: Example 2: Modelling Attacker Levels
	Slide 28: Example 2: Modelling Attacker Levels
	Slide 29: Relative Security Final Locale Infrastructure
	Slide 30: Conclusion
	Slide 31: Conclusion

