
LECTURE 4: SEMANTICS AND ABSTRACTION
MODULAR PROOFS IN ISABELLE/HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Midlands Graduate School 2025 |

University of Sheffield

COURSE OVERVIEW

Lectures:

 Introduction to Proof Assistants

 Formalising the basics in Isabelle/HOL

 Introduction to Isar, more types, Locales and Type-classes

 Case studies:

 Formalising Mathematics: combinatorics & advanced locale reasoning
patterns

 Semantics, Abstraction, PL: Formalising semantics, program
properties, and introducing modularity/abstraction.

Example Classes:

 Isabelle exercises based on the previous lecture

 Will be drawing from the existing Isabelle tutorials/Nipkow’s

Concrete Semantic Book, as well as custom exercises (e.g. for

locales).

A practical course on the

effective use of the

Isabelle/HOL proof assistant

in mathematics and

programming languages

LECTURE 4

OVERVIEW

Yesterday: mathematical formalisations/case-study

TODAY:

 Program verification and proof assistants

 Review: operational semantics

 Formalising semantics and working with basic properties

 Examples of locales/modularity in program verification

 Refinement +

 Abstract reasoning

 Proof assistants in the wider-research landscape.

Modular proofs = an

engineering-like approach to

formalisation.

PROGRAM VERIFICATION & PROOF ASSISTANTS

OVERVIEW OF VERIFICATION RESEARCH

The development of several proof assistants was (and continues to be) motivated by program

verification in many cases. Isabelle’s AFP is split fairly evenly between “Computer Science” and

“Mathematics”

Some historical/long running applications:

 Intel HOL-light (Floating Point verification): https://www.cl.cam.ac.uk/~jrh13/papers/sfm.pdf

 Sel4 (Isabelle): first formally verified operating system https://sel4.systems/About/

Currently

 Increasingly seen in industry (proof assistants are no longer just the domain of research!).

 Many projects focusing on various verification tasks, frameworks for other work etc:

 AutoCorres (C verification), hoare/separation logic reasoning, algorithm verification etc.

https://www.cl.cam.ac.uk/~jrh13/papers/sfm.pdf
https://sel4.systems/About/

SEMANTICS REVIEW

SEMANTICS INTRODUCTION

 We’ll consider operational semantics, which can be given inductively:

 Specifying syntax

 Expression evaluation

 Command Execution

 Typically, properties are proven using induction.

 We also often want to develop a type system for our semantics to reason on properties such as

progress etc.

LET’S CONSIDER A BASIC SMALL-STEP SEMANTICS

 In the “Concrete Semantics” textbook (Nipkow & Klein, 2014), a basic “IMP” language is

introduced. We’ll use this as our initial case study today:

𝑐𝑜𝑚 ∷= SKIP 𝑠𝑡𝑟𝑖𝑛𝑔 ∷= 𝑎𝑒𝑥𝑝 𝑐𝑜𝑚 ; ; 𝑐𝑜𝑚 IF 𝑏𝑒𝑥𝑝 THEN 𝑐𝑜𝑚 ELSE 𝑐𝑜𝑚 WHILE 𝑏𝑒𝑥𝑝 DO 𝑐𝑜𝑚

AND HERE’S AN EQUIVALENT BIG STEP SEMANTICS

 In the “Concrete Semantics” textbook (Nipkow & Klein, 2014), a basic “IMP” language is

introduced. We’ll use this as our initial case study today:

𝑐𝑜𝑚 ∷= SKIP 𝑠𝑡𝑟𝑖𝑛𝑔 ∷= 𝑎𝑒𝑥𝑝 𝑐𝑜𝑚 ; ; 𝑐𝑜𝑚 IF 𝑏𝑒𝑥𝑝 THEN 𝑐𝑜𝑚 ELSE 𝑐𝑜𝑚 WHILE 𝑏𝑒𝑥𝑝 DO 𝑐𝑜𝑚

SEMANTICS IN ISABELLE

DATATYPES

 This is a basic command datatype in Isabelle (from the IMP language) with custom syntax

 We could either define elements of com abstractly or concretely:

Abstract Concrete

DATATYPES

 Say for example we wanted to also make our com definition more abstract.

 As Isabelle’s datatypes allow for parameterisation, it is quite easy to do this!

 In the example below, parametrised com with two additional type parameters instead of using a

more concrete aexp and bexp, noting Assign has also been generalised to an Atomic command.

Inductive Set Approach

 After functions and datatypes, inductive definitions are one of the more valuable basic

features of Isabelle

 They generate numerous useful facts (induct rules, cases etc).

 For semantics, we typically use the predicate style (as we also are often dealing with quite

complex “triples”).

Inductive Predicate

ASIDE: INDUCTIVE SETS AND PREDICATES

SMALL STEP DEFINITION

 Like other definitions, inductive definitions allow us to specify special syntax.

AUTOMATION AND RULE INVERSION

 We can make induction rules more useful by “reformatting it”, such as splitting into pairs:

 This adds the automatically generated “introduction” rules to the simp/intro sets (so tactics like

auto will automatically use them).

 Rule inversion: We can also use “inductive cases” to get our rule inversion facts of our semantics

for free!

A SAMPLE PROOF: DETERMINISTIC

 We can use our inductive rules easily as normal, and for simple facts the proofs can be very fast!

 DEMO! More of the IMP theory

BUT WHAT ABOUT MODULARITY?

INTRODUCING A BASIC LOCALE

 A basic locale which represents a context that defines a “small step” semantics with a “final”

operator (i.e. representing a program terminating)

 Other useful definitions and properties can now be defined/proven locally.

DEFINING ABSTRACT PROPERTIES

 Consider introducing a Hoare logic.

 We can abstractly define if a Hoare triple is valid without needing to know anything about the

semantics is valid. And therefore other useful lemmas on this definition!

Using locale

parameters

INHERITANCE

 We can use locales in all the same way we used them for mathematics, including inheritance.

 For example, we may want to abstractly reason on a semantics with a deterministic characteristic.

INTERPRETING THE LOCALE (CONCRETE)

 Interpreting the Step locale with our concrete small-step semantics from earlier is trivial, as there

are no assumptions!

 Similarly, we can use our deterministic lemma from earlier to establish an interpretation for our

abstract deterministic locale

OR “REFINING” THE LOCALE

 As is typical of program verification, we often want to gradually refine our specification, rather than

jump straight to a concrete definition.

 This is an example of a locale which contains a concrete inductive definition of the semantics, that

assumes the existence of evaluation functions for arithmetic and Boolean expressions

 We use sublocale to establish the relationship

REFINEMENT MORE GENERALLY

 A locale can also be thought of as a specification in the refinement context.

 This is particularly useful in verifying algorithms/data-structures.

 Example of a basic Queue specification (for research examples in data structures/algorithms, see

work by Nipkow, Abdulaziz etc)

MORE ADVANCED CASE STUDIES

EXAMPLE 1: MORE ABSTRACT PROPERTIES

Open abstract

context

New local definition of

desired property

Using locale

parameters

 In some recent joint work (w/ A. Popescu & J. Wright), we needed to abstractly reason on safety for

Rely-Guarantee reasoning, and could then show our theorem held for any small step semantics, as

well as interpret it for practical use.

EXAMPLE 2: MODELLING ATTACKER LEVELS

 Information-flow security investigates if any information can leak from “high valued” variables to

“low security” variables through the execution of a program

 Relative security focuses on checking if an enhanced (e.g. optimized) system, is secure with

respect to the original (“vanilla”) system (i.e. if any leaks occur, they already occurred in the basic

version).

 We can model the idea of “leaks” in different ways, depending on how “abstract” a property we

want to reason on.

 For further details:

 See the original conference paper here (B. Dongol, M. Griffin, A. Popescu, J. Wright, 2024):

https://andreipopescu.uk/pdf/relative_security_CSF_2024.pdf

 The AFP Entry here: https://www.isa-afp.org/entries/Relative_Security.html

https://andreipopescu.uk/pdf/relative_security_CSF_2024.pdf
https://www.isa-afp.org/entries/Relative_Security.html

EXAMPLE 2: MODELLING ATTACKER LEVELS

 What does it mean for a program to “leak?”

 We first model the system as a transition system (i.e. a set of states, initial states, and transition

relation).

 We then introduce the abstract notion of a “leak”, and a predicate “leak via” which given two

traces, indicates if they exhibit a leak

 But what is a leak? For this we need to be able to reason on an “attacker model”, i.e what are the

secrets, possible observations, and actions (with respect to execution traces).

 Relative Security then requires reasoning on two instances of a system, with a more concrete

notion of leaks.

EXAMPLE 2: SETTING UP A TRANSITION SYSTEM

 The base transition system locale

 A transition system that includes the definition of finality as an assumption

EXAMPLE 2: MODELLING ATTACKER LEVELS

 Leakage Model: Assumes the existence of some function describing leaks

 Attacker Model: Specifies the leak via function using more precise functions on secrets, attackers

and observers

EXAMPLE 2: MODELLING ATTACKER LEVELS

 Relative Security – uses two instances of attacker models.

 We restate all the parameters using for to keep our custom type names

RELATIVE SECURITY FINAL LOCALE INFRASTRUCTURE

To use this, we can define more

concrete definitions of attacker models

using a particular semantics (or

another more concrete locale!).

DEMO AGAIN

CONCLUSION

We’ve covered

 A fast-paced introduction to the basics of Isabelle/HOL!

 An in-depth discussion of type classes and locales, including

advanced reasoning patterns on locales.

 An introduction to reasoning on semantics in Isabelle/HOL

 Research case studies: formalized combinatorics, relative

security.

And along the way:

 Some history (proof assistants, formalised maths, verification)

 Insight and links to current research in proof assistants/formal

verification

Any feedback/questions/

thoughts? Feel free to get in

touch at:

c.l.edmonds@sheffield.ac.uk

mailto:c.l.edmonds@sheffield.ac.uk

CONCLUSION

Your Challenge:

 Try out formalising your own work in Isabelle (or any other proof

assistant out there).

 Keep “software engineering” principles in mind:

 Verification is only half the goal

 Modular, reusable, and maintainable formal proof libraries can go
much further!

More Resources:

 To continue the work we started on semantics today, see Nipkow

and Klein’s book: http://concrete-semantics.org

 CPP/ITP are good starting points for formalisation focused

research.

 See more links at start of lecture 1!

Any feedback/questions/

thoughts? Feel free to get in

touch at:

c.l.edmonds@sheffield.ac.uk

http://concrete-semantics.org/
mailto:c.l.edmonds@sheffield.ac.uk

	Slide 1: Lecture 4: Semantics and Abstraction Modular Proofs in Isabelle/HOL
	Slide 2: Course OVERVIEW
	Slide 3: Lecture 4 Overview
	Slide 4: Program Verification & Proof Assistants
	Slide 5: Overview of Verification Research
	Slide 6: Semantics Review
	Slide 7: Semantics Introduction
	Slide 8: Let’s Consider a Basic Small-Step Semantics
	Slide 9: And here’s an Equivalent Big Step Semantics
	Slide 10: Semantics In Isabelle
	Slide 11: Datatypes
	Slide 12: Datatypes
	Slide 13: Aside: Inductive Sets and Predicates
	Slide 14: Small Step Definition
	Slide 15: Automation and Rule Inversion
	Slide 16: A Sample Proof: Deterministic
	Slide 17: But What About Modularity?
	Slide 18: Introducing a Basic Locale
	Slide 19: Defining Abstract Properties
	Slide 20: Inheritance
	Slide 21: Interpreting The Locale (Concrete)
	Slide 22: Or “REFINING” The LOCALE
	Slide 23: Refinement More Generally
	Slide 24: More Advanced Case Studies
	Slide 25: Example 1: More Abstract Properties
	Slide 26: Example 2: Modelling Attacker Levels
	Slide 27: Example 2: Modelling Attacker Levels
	Slide 28: Example 2: Setting UP A Transition System
	Slide 29: Example 2: Modelling Attacker Levels
	Slide 30: Example 2: Modelling Attacker Levels
	Slide 31: Relative Security Final Locale Infrastructure
	Slide 32: Demo Again
	Slide 33: Conclusion
	Slide 34: Conclusion

