
LECTURE 3: FORMALISING MATHEMATICS
MODULAR PROOFS IN ISABELLE/HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Midlands Graduate School 2025 |

University of Sheffield

COURSE OVERVIEW

Lectures:

 Introduction to Proof Assistants

 Formalising the basics in Isabelle/HOL

 Introduction to Isar, more types, Locales and Type classes

 Case studies:

 Formalising Mathematics: Combinatorics & advanced locale
reasoning patterns

 Program Verification: Formalising semantics, program properties, and
introducing modularity/abstraction.

Example Classes:

 Isabelle exercises based on the previous lecture

 Will be drawing from the existing Isabelle tutorials/Nipkow’s

Concrete Semantic Book, as well as custom exercises (e.g. for

locales).

A practical course on

effective use of the

Isabelle/HOL proof assistant

in mathematics and

programming languages

LECTURE 3

OVERVIEW

Yesterday: Introduction to modular techniques

TODAY:

 Formalisation of mathematics (some more history!)

 Case Study: Formalising combinatorial structures

 Some mathematical background: designs, graphs, hypergraphs.

 Locale reasoning patterns

 Locale interactions

 Rewriting

 Mutual & reverse sublocales

 Proofs with Locales

 Advantages vs Limitations

Modular proofs = an

engineering-like approach to

formalisation.

FORMALISATION OF MATHS

SOME HISTORY

The Kepler
Conjecture (1998)

• Hales et al.

• “The Flyspeck
Project”

• Complicated
Proof

• Relied on code

• HOL
Light/Isabelle

• 2014

Four Colour
Theorem (1976)

• Gonthier &
Werner

• Relied on code

• Coq

• 2005

Prime Number
Theorem (1896)

• Avigad/Harrison

• Significant
Theorem

• Isabelle/HOL
Light

• 2004

Odd Order
Theorem

• Gonthier et al.

• Significant
Theorem

• Coq

• 2012

MORE RECENT DEVELOPMENTS

Proof assistants are firmly entering the domain of regular mathematicians

 Terrence Tao and Tim Gowers = two field medallists commenting regularly on this.

 See Tao’s discussion: https://terrytao.wordpress.com/wp-content/uploads/2024/03/machine-assisted-

proof-notices.pdf

 Lean in particular has managed to create a community of mathematicians using proof assistants

that didn’t previously exist.

 In many ways emphasizes the importance of other factors like: community chats, documentation, user

interface, online accessibility etc.

 Percentages of proof assistant conference papers on mathematical formalisations is increasing

(e.g. ITP/CPP).

https://terrytao.wordpress.com/wp-content/uploads/2024/03/machine-assisted-proof-notices.pdf
https://terrytao.wordpress.com/wp-content/uploads/2024/03/machine-assisted-proof-notices.pdf

LIBRARIES ACROSS PROOF ASSISTANTS

 Many proof assistants have substantial libraries in their distribution, as well as separate advanced

libraries …

 Mizar: Mizar Mathematical Library - http://mizar.org/library/

 Rocq (Coq): Mathematical Components - https://math-comp.github.io/

 Isabelle[HOL]: Archive of Formal Proofs - https://www.isa-afp.org/topics/

 Lean: mathlib - https://github.com/leanprover-community/mathlib4

 Most older libraries are not unified (both an advantage and limitation!)

http://mizar.org/library/
https://math-comp.github.io/
https://www.isa-afp.org/topics/
https://github.com/leanprover-community/mathlib4

A MATHEMATICAL CASE STUDY
COMBINATORIAL STRUCTURES

MOTIVATING PROBLEM – LARGE HIERARCHIES

•Projective planes

•Block designs

•Balanced Designs

•Group Divisible Designs

•Incomplete designs

•Steiner Systems

•Latin Squares

•Complete Graphs

•Graph Decompositions
(Structure)

•Regular graphs

•Cyclic graphs

•K-uniform hypergraphs

•Regular hypergraphs

•Regular k-uniform
graphs

•Non-trivial hypergraphs

Hypergraphs Graphs

GeometricDesigns

Combinatorial

Structures
+ Many more…

THE CHALLENGES

Problem 1:

Many variations and
definitions

(inconsistent)

Problem 2:

Complex inheritance
patterns

Problem 3:

Different language…
equivalent
structures?

The Fano Plane

Design Rep

{0, 1, 2}, {0, 3,

4}, {0, 5, 6}, {1,

3, 5}, {1, 4, 6},

{2, 3, 6}, {2, 4, 5}

GRAPH THEORY

 There are many known definitions to a (simple) graph:

 A relation based definition: A set of points 𝑉 and a well-formed adjacency relation.

 A set based definition: A set of points 𝑉 and a set of edges, which are undirected pairs/sets of size two

 (or just a set of edges, where the vertices are defined implicitly).

 Many types of graphs introducing certain structure

 Complete Graphs

 Graph Decompositions (Structure)

 Regular graphs

 Cyclic graphs

 Many variations on graphs:

 Digraphs

 Multigraphs

INTRO TO COMBINATORIAL DESIGNS

“The School Girls Problem (Kirkman, 1850)”

Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required to

arrange them daily so that no two shall walk twice abreast.

Sun Mon Tue Wed Thu Fri Sat

ABC

DEF

GHI

JKL

MNO

ADG

BEH

CJM

FKN

ILO

AEJ

BFL

CHO

DIN

GKM

AFO

BDM

CGL

EIK

HJN

AHK

BGN

CFI

DJO

ELM

AIM

BKO

CEN

DHL

FGJ

ALN

BIJ

CDK

EGO

FHM

This is what is known as a 2 – (15, 3, 1) design.

▪ There are v = 15 points – the school girls

▪ Each block is of size k = 3 – each day the girls are put in groups of 3

▪ Each pair of points appears together in a block exactly once (λ = 1)

INTRO TO COMBINATORIAL DESIGNS

 A design is a finite set of points V and a collection of subsets of V, called blocks B (or alternatively,

an “incidence relation”

 Applications range from experimental and algorithm design, to security and communications.

 What makes a design interesting? Properties:

 The set of block sizes K

 The set of replication numbers R

 The set of t-indices Λ𝑡

 The set of intersection numbers M

 Language varies: designs, hypergraphs, matrices, geometries, graph decompositions, codes …

MORE EXAMPLES

 Block size: 𝑘 = 3

 Replication Number:

𝑟 = 3

 Pairwise Points

index: 𝜆2 = 1

 Intersection Number:

𝑀 = {0, 1}

The Fano Plane

Design Rep

{0, 1, 2}, {0, 3, 4},

{0, 5, 6}, {1, 3, 5},

{1, 4, 6}, {2, 3, 6},

{2, 4, 5}

{1, 2, 3}, {2, 3},

{3, 5, 6}, {4}

Hypergraph

Design Rep
 Block size: 𝐾 = {1,2,3}

 Replication Number:

𝑅 = {0, 1, 2}

 Pairwise Points index:

Λ2 = {0, 1, 2}

 Intersection Number:

𝑀 = {0, 1, 2}

A BASIC HIERARCHY
COMBINATORIAL DESIGN THEORY

Approach 1: Type classes? Approach 2: Records + Locales?

INTRODUCING MODULARITY/INHERITANCE: FIRST ATTEMPTS…

Messier notation, less automation.

THE LOCALE-CENTRIC APPROACH

 Use only locales to model different structures (no complex types/records etc)

 Use local definitions inside locale contexts

 Type-synonyms can be used with care to bundle objects

 The “Little Theories” approach for locale definitions (Farmer, 1992).

 Avoid duplication at all costs!

 First Introduced by Ballarin in a paper on “Formalising an Abstract Algebra Textbook” (2020)

THE BASIC DEFINITIONS

Note: These definitions are from a simplified example we’ll be exploring in this lecture (no multisets!)

AND ANOTHER HIERARCHY….? - HYPERGRAPHS

 Realistically, this is just designs… with another language – so we rename parameters than use

direct inheritance!

Note: These definitions are from a simplified example we’ll be exploring in this lecture (no multisets!)

BACK TO THE DESIGN HIERARCHY

 Turns out we can build really big hierarchies!*

 The arrows are annotated with the parameter/assumption added. Dotted arrows indicate indirect inheritance

*Taken from 2021 CICM Paper: https://link.springer.com/chapter/10.1007/978-3-030-81097-9_1

https://link.springer.com/chapter/10.1007/978-3-030-81097-9_1

EXTENDING THE HIERARCHY

direct inheritance

 sublocale relation

 And expanding it even further!

 Isabelle handles all the relations naturally, but lets zoom in on some of the interesting reasoning patterns

*Taken from 2021 CICM Paper: https://link.springer.com/chapter/10.1007/978-3-030-81097-9_1

https://link.springer.com/chapter/10.1007/978-3-030-81097-9_1

EXTENDING THE HIERARCHY

direct inheritance

 sublocale relation

 And expanding it even further!

 Isabelle handles all the relations naturally, but lets zoom in on some of the interesting reasoning patterns

*Taken from 2021 CICM Paper: https://link.springer.com/chapter/10.1007/978-3-030-81097-9_1

https://link.springer.com/chapter/10.1007/978-3-030-81097-9_1

LOCALE REASONING PATTERNS
MODELLING INTERACTIONS

 It’s always easier to do proofs inside a locale context. So when reasoning on two instances of a locale, why

not create another locale? The locale inheritance system allows for such “dual” inheritance

 In a locale with two “instances” of another locale, it is still easy to do proofs using the locale

parameters/properties as above (note how source and target are used)

 But sometimes, we do also want to reason on if two designs are actually isomorphic, without knowing the

exact bijection between them.

LOCALE INTERACTIONS – COMBINING LOCALES

ASIDE…. A NOTATION TRICK

 When working outside a locale context, sometimes you do want to be able to “bundle parameters”. In

the isomorphism example below, we’re doing this by pair types.

 Sometimes it’s even useful to declare a type synonym to do this.

 Generally, you should still avoid doing actual proofs with these types by interpreting the relevant locale

as soon as its need.

 This means you still get all the nice benefits of working with a locale

 Just with some notational advantages in certain definitions!

More meaningful accessors than

fst and snd

EQUIVALENT STRUCTURES? - REVERSE SUBLOCALES

 In our hypergraph example, we already connected hypergraphs to designs via direct inheritance.

 But we also want to establish this connection in the opposite direction (i.e. “reverse sublocale”)

 And we also want to rewrite block design theorems on certain definitions to use design theoretic

language, via the rewrites keyword (introduces extra proof goals)

Use of rewrites

reverse sublocale

EQUIVALENT STRUCTURES? - MUTUAL SUBLOCALES

 Now consider if we formalised hypergraphs using an incidence relation definition,

 Instead of inheriting directly in one direction, we now need to establish sublocale relationships in

both directions.

EQUIVALENT STRUCTURES? - MUTUAL SUBLOCALES

 Let’s try it naively….

 Looping issue! Sublocale loops/naming clashes are the most common issue when establishing

this.

 Careful interpretations and rewrites of parameter definitions can help us avoid such loops.

MUTUAL SUBLOCALES

There is a simple 4 step “recipe” for establishing mutual sublocales

1) In each locale, create definitions to represent the any parameters the locales do not share.

2) Set up a temporary interpretation of the mutual representation in each locale

inf_design locale hypersys_rel locale

inf_design locale hypersys_rel locale

MUTUAL SUBLOCALES

There is a simple 4 step “recipe” for establishing mutual sublocales

3) Establish the equivalence of the interpretation’s version of a property, and the local definition

4) Establish the sublocale declaration in both direction with careful use of the rewrites command.

 Note: rewriting is not required if parameters do not need to be “manipulated”

 If you further refine both locales, further mutual sublocales can usually be established just via step (4)

inf_design locale hypersys_rel locale

PROOF PATTERNS

There are two main proof patterns when establishing something is an instance of a locale

(1) Custom introduction rules

 The intro_locales tactic isn’t particularly usable by itself – unfolding to the axiomatic definition of a locale

 If you commonly know you need to establish locale B for something that already satisfies ancestor locale

A’s assumptions, define a custom introduction rule!

 This can be in a locale context or outside a locale context

Lemma in finite_incidence_system context

PROOF PATTERNS

There are two main proof patterns when establishing something is an instance of a locale

(2) Local interpretation first

 unfold_locales unfolds everything! If you’re 10 locales deep into a hierarchy this can be a lot, and

annoying if you’ve already shown elsewhere (even in a different theory) that the parameters satisfy a

locale part way through that hierarchy

 By applying local interpretation first, Isabelle takes this into account in the local proof context!

 In addition to using a locale as a “definition”, you can also easily refer to locale definitions and

theorems outside a locale in your assumptions

 For example, below, we wanted to use the replication number definition to define a definition

outside the locale context

 Note how in addition to the point (which is all we’d need in the locale context), we also need to

pass any of the locale parameters used in the definition (in this case, the blocks).

 Where possible – such definitions should be inside the locale context!

MORE NOTATION TRICKS – REASONING OUTSIDE OF CONTEXT

Pass locale parameter as well

ISABELLE DEMONSTRATION
(SIMPLIFIED LIBRARY)

MORE LOCALES IN PROOFS
TAKEN FROM RESEARCH LIBRARY

 In mathematics, we often have symmetric properties – where we can choose something “without loss of

generality”

 Locales allow us to minimise the amount of repeated work in a proof environment

 This example is in a bipartite graph locale context, which has two extra vertex set parameters for the partition

 We show switching this is still a bipartite graph … which makes it easy to avoid repeating long proofs

USING SYMMETRIC INSTANCES

Lemma with 7 line proof

Show switching X and Y is still

bipartite

Interpret the symmetrical graph

Use the lemma for the “switched” instance

MULTIPLE INSTANCES OF STRUCTURE

Interpret instances from

assumption.

 Locales still enable natural reasoning when working with lots of instances of a structure!

 In this example, an assumption establishes that each block allows us to construct a valid K-GDD

design, then in the proof we interpret it for an arbitrary block!

COMBINING LOCALES ACROSS DISCIPLINES

 Locales can be combined no matter their “mathematical” context

 This combines probability with graph theory

MODULAR PROOF TECHNIQUES

 Combining locales can also prove valuable in

the modularisation of proof techniques – the

other side to the “software engineering”

approach.

 When reasoning on probabilistic structures, I

often needed to start a proof by establishing a

probability space (lots of formal infrastructure)

 The example shows how all this infrastructure

can be combined using a locale

 + allows us to develop proof techniques in a

natural locale context, that can then be used

repeatedly!

LOCALES: ADVANTAGES VS LIMITATIONS

Advantages

 Facilitates a “little theories” approach

 Removes duplication

 Increases flexibility and extensibility.

 Easy hierarchy manipulation

 Significant notational benefits.

 Proofs became much neater.

 Transfer of properties

 More modular proofs & proof techniques

Limitations

 Lack of automation

 Increasingly complex locale hierarchy,

where sublocale relationships must be

maintained.

 Using locale specifications outside of a

locale context lacks support (Notational etc)

 Can’t naturally define definitions involving

multiple instances of structures

OVERVIEW: ADVANTAGES & LIMITATIONS

MORE EXAMPLES IN RESEARCH

https://link.springer.com/chapter/10.1007/978-3-030-81097-9_1

https://www.isa-afp.org/authors/edmonds/

https://dl.acm.org/doi/abs/10.1007/s10817-019-09537-9

https://arxiv.org/abs/2104.09366

https://dl.acm.org/doi/abs/10.1145/3573105.3575679

More of this work in combinatorial structures

(beginning here: https://link.springer.com/chapter/10.1007/978-3-030-81097-9_1,

See AFP entries here: https://www.isa-afp.org/authors/edmonds/)

The original fundamental work by Ballarin on Algebra
(https://dl.acm.org/doi/abs/10.1007/s10817-019-09537-9)

Work on formalising Schemes in Simple Type Theory by Bordg, Paulson, & Li
(https://arxiv.org/abs/2104.09366)

Work on formalising omega categories (Bordg & Mateo)

https://dl.acm.org/doi/abs/10.1145/3573105.3575679

https://link.springer.com/chapter/10.1007/978-3-030-81097-9_1
https://www.isa-afp.org/authors/edmonds/
https://dl.acm.org/doi/abs/10.1007/s10817-019-09537-9
https://arxiv.org/abs/2104.09366
https://dl.acm.org/doi/abs/10.1145/3573105.3575679

NEXT TIME

 Example Class:

 Extending our graph theory locales from yesterday

 Connecting graph theory to (simplified) design/hypergraph library

 Using reasoning patterns such as equivalence

 Proving more properties/algebraic extensions (optional)

 Next Lecture:

 Program verification in proof assistants.

 Introduction to formalising semantics in Isabelle

 Including more datatypes, inductive definitions, and functions

 Case studies in locales use with program semantics

 Introducing abstraction to proofs

 Modelling program properties.

	Default Section
	Slide 1: Lecture 3: Formalising Mathematics Modular Proofs in Isabelle/HOL
	Slide 2: Course OVERVIEW
	Slide 3: Lecture 3 Overview

	Formalisation of Maths
	Slide 4: Formalisation of Maths
	Slide 5: Some History
	Slide 6: More Recent Developments
	Slide 7: Libraries Across Proof Assistants

	Motivating Problem
	Slide 8: A Mathematical Case Study
	Slide 9: Motivating Problem – Large Hierarchies
	Slide 10: The Challenges
	Slide 11: Graph Theory
	Slide 12: Intro to Combinatorial Designs
	Slide 13: Intro to Combinatorial Designs
	Slide 14: More Examples

	A Basic Hierarchy
	Slide 15: A Basic Hierarchy
	Slide 16: Introducing Modularity/Inheritance: First Attempts…
	Slide 17: The Locale-Centric Approach
	Slide 18: The Basic Definitions
	Slide 19: And Another Hierarchy….? - Hypergraphs
	Slide 20: Back to the Design Hierarchy
	Slide 21: Extending the Hierarchy
	Slide 22: Extending the Hierarchy

	Reasoning Patterns
	Slide 23: Locale Reasoning Patterns
	Slide 24: Locale Interactions – Combining Locales
	Slide 25: ASIDE…. A Notation Trick
	Slide 26: Equivalent Structures? - Reverse Sublocales
	Slide 27: Equivalent Structures? - Mutual Sublocales
	Slide 28: Equivalent Structures? - Mutual Sublocales
	Slide 29: Mutual Sublocales
	Slide 30: Mutual Sublocales
	Slide 31: Proof Patterns
	Slide 32: Proof Patterns
	Slide 33: More Notation Tricks – Reasoning outside of context
	Slide 34: Isabelle Demonstration

	Locales in Proofs
	Slide 35: More Locales in Proofs
	Slide 36: Using Symmetric Instances
	Slide 37: Multiple instances of structure
	Slide 38: Combining Locales Across disciplines
	Slide 39: Modular proof techniques

	Advantages Limitations
	Slide 40: Locales: Advantages vs Limitations
	Slide 41: Overview: advantages & Limitations
	Slide 42: More Examples in Research
	Slide 43: Next Time

