University of

‘ Shefﬁeld

LECTURE 2: LOCALES, TYPE CLASSES & MIODULARITY
MODULAR PROOFS IN ISABELLE HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk
Midlands Graduate School 2025 |
University of Sheffield

Lectures:
= |ntroduction to Proof Assistants

= Formalising the basics in Isabelle/HOL

= |Introduction to Isar, more types, Locales and Type

COURSE OVERVIEW
classes
A practical course on m Case studies:
effective use of the = Formalising Mathematics: Combinatorics & advanced locale reasoning
Isabelle/HOL proof assistant patterns
in mathematics and = Program Verification: Formalising semantics, program properties, and

introducing modularity/abstraction.

programming languages

Example Classes:
= |sabelle exercises based on the previous lecture

= Will be drawing from the existing Isabelle tutorials/Nipkow’s
Concrete Semantic Book, as well as custom exercises (e.g. for
locales).

LECTURE 2 | |

OVERVIEW Yesterday: Introduction to proof assistants, and a tour of
|Isabelle/HOL.

Modular proofs = an TODAY

engineering-like approach to

formalisation. = Finishing off Isabelle introduction

= Alittle more on types in Isabelle

" The role of modularity in formalisation

= Intro to Locales and Type-classes

ISAR: A STRUCTURED PROOF LANGUAGE

STRUCTURED PROOFS lemma ex3_isar:

assumes "(P A Q) — R"

shows " P — (Q — R)"
= The Isar proof language allows us to do oroof (rule impI)+

structured human-readable proofs assume P Q

then have "P A Q" by (intro conjI)

= |tis also very easy to use! Pick almost any AFP then show R using assms by (elim mp)

entry, and you'll see elements of Isar style aed
proofs lemma dvd trans:
= Useful for breaking down a theorem into smaller ~ TiXes a :: nat
: . assumes ab: "a dvd b" and bc: "b dvd c"
goals, which may not be useful as their own

shows "a dvd c"
lemmas. proof -
obtain v where "b = a * v"

= Useful keywords for calculations: (have, also using dvdE ab by blast

have, finally)and (have, moreover moreover obtain w where "c = b * w"
have, ultimately) \\\\\\\\\\\\\\’ using dvdE bc by blast
ultimately have "c = a * v * y"
= Proofs can also be nested by blast

then show ?thesis by simp
ged

SOME MORE ON TYPES

BASIC TYPES

® Yesterday we introduced datatypes as an example of a user defined type in Isabelle

Today:

More datatypes
Type declarations
Type Synonyms
Pairs

Record types

And finally ... type classes.

DATATYPES

" One common use case of datatypes is an option datatype
datatype 'a option = None | Some ‘a
= Datatypes can be parameterised by multiple types:
datatype ('a, 'b, 'c) three = Three 'a 'b 'c

= Datatypes can also be annotated:

datatype (set: 'a) mylist =
nulls mNAl (<[]>) e

| mCo (mhd: 'a) (mtl: "'a mylist") (infixr <##> 65)

f

" The datatypes (and co-datatypes) tutorial has significantly more information.

TYPE SYNONYMS, DECLARATIONS, AND DEFINITIONS

= A type synonym can be useful to make a formalisation more readable/descriptive. E.g.
type _synonym 'a edge = "'a set”
® declares a parameterised edge type which is the same as a set

= Atype declaration declares a new type without defining it

typedecl Test

® A type definition allows you to define a new type

typedef three = "{0:: nat, 1, 2}"

apply (intro exI[of _ 01) (* Goal must show RHS is non-empty *)
by simp

®= You must prove the type is not empty

Introduces Rep and Abs properties to convert between reasoning on base type and new type (then you
need to establish useful properties)...

= Orin this case just use a datatype which does the setup for you!

PAIRS

= While functions are usually curried, it is also possible to work with a pair type in Isabelle.

= For example, below is a type synonym which represents a graph that uses a pair

type_synonym '‘a graph = "'a set x 'a edge set"
= Built in definitions to access the elements:

lemma "(A(X,y).x) p = fst p"
by(simp add: split def)

lemma " (A (X,y).y) p = snd p"
by (simp split: prod.split)

RECORD TYPES

® Records are essentially an n-tuple, with labels, a familiar programming language construct

= Each field has a type (which may be polymorphic), field names are part of the record type, and the
order of the fields is important.

record point = definition ptl :: point where
Xcoord :: int "ptl = (| Xcoord = 999, Ycoord = 23 |)"
Ycoord :: int

= Record types support basic extensions.

datatype colour = Red | Green | Blue

record cpoint = point +
col :: colour

DEMONSTRATION

RECORDS AND TYPES

TYPE CLASSES

INTRODUCTION

= Type classes introduce polymorphism and overloading into the Isabelle/HOL infrastructure
= |sabelle type classes are “Haskell-like”. They enable you to*

m Specify abstract parameters together with corresponding specifications
" |nstantiate those abstract parameters by a particular type
= |n connection with a less ad-hoc approach to overloading

= Link to the Isabelle module system (we’ll get to this later!) Custom Notation

class semigroup = /

Parameters —>[fixes mult :: "'a = 'a = 'a" (infix1"®" 70)
assumes assoc: "(X ® Yy) ® Zz=xXx ® (y ® z)"
Specification/{

= For more info see the type class tutorial and hierarchy documentation for examples:

https://isabelle.in.tum.de/library/Doc/Typeclass Hierarchy/typeclass hierarchy.pdf
*Taken from the Isabelle Type Class Tutorial

https://isabelle.in.tum.de/library/Doc/Typeclass_Hierarchy/typeclass_hierarchy.pdf

TYPE CLASS INSTANCE

= To instantiate a type class by a particular type an instance proof is required:

instantiation int :: semigroup
begin

Lomﬂdef///»{definition mult int def : "i ® j =1 + (j::int)"

of param

[instance proof

fix 1 j k :: int have "(i + j) + k=1 + (j + k)" by simp

///' then show " (i1 ® j) ® k =1 ® (] ® k)" unfolding mult int def .
ged

“end

Instance Proof

lemma "(1 + 2) + (3 ::int) =1 + (2 + 3)"
using asso simp (* directly use *) Can now use type class assumptions
outside class context

SUBCLASS

Direct Inheritance

= Build directly off an existing class by adding

new parameters and/or assumptions

class monoidl = semigroup +
fixes neutral :: 'a ("1")
assumes neutl: "1 ® x = x"

class monoid = monoidl +
assumes neutr: "x ® 1 = x"

Indirect Inheritance

= We can use subclass to introduce indirect
inheritance (with a proof)

class group = monoidl +
fixes inverse :: "'a = 'a"
assumes invl: "(inverse X) ® x = 1"

SUBCLASS INHERITANCE HIERARCHY

®= The impact of using subclass to manipulate the inheritance hierarchy.

Semigroup semigroup
monoidl monoidl
monoid monoid

\

group group

DEMO

LIMITATIONS?

= Type class operations are restricted to a single type parameter, and can only be instantiated in one
way per type:

= E.g. alist may be ordered multiple ways, but can only instantiate an order type class once.

m Parameters are fixed over the whole type class hierarchy and cannot be refined in specific
situations

= Type class inheritance has limitations: e.g. We can’t declare monoidr separately, then try to bring

them together easily.
class monoidr = semigroup +
fixes neutral :: 'a ("1")
assumes neutr: "x ® 1 = x"

class monoid = monoidl + monoidrf}

Proof state Auto hovering Auto update Update Search:

Duplicate parameter(s) in superclasses: "neutral"

SO WHAT’S
THE
ALTERNATIVE?

LOCALES

LOCALE BASICS

= | ocales are Isabelle’s module system. From a logical perspective, they are simply
persistent contexts.

/\x1 e X s [[All ,Am]] = (.

" Provides fixed type and term variables and contextual assumptions within a local
context.

= Type classes use and can interact with the underlying locale infrastructure.

Class
locale semigroup orig = class semigroup orig add = plus“+
fixes mult :: "'a = 'a = 'a" (infix1"®" 70) assumes add assoc: “(a + b) + ¢ =a + (b +)"
assumes assoc: "(X ® YV) ® z=x Q@ (y ® z)" begin
\ sublocale add: semigroup orig plus

Same params/assumptions

Locale inheritance by standard (fact add assoc)
as before

end

LOCALE BASICS

® Locales allow us to work explicitly with “carrier sets” (if we want to)

locale semigroup = Carrier set
fixes M and composition (infixl "-" 70)
assumes composition closed [intro, simpl: "[a
assumes assoc[introl: "[a e M; b e M; c e M| = (

® Think of locales as more of a set-based rather than type-based approach.

EM; beM] =
a

INTERPRETING A LOCALE

m Global theory interpretation:
Label interpretation

Locale being interpreted

interpretation ints: semigroup Z plus
by unfold locales simp all \]‘

\ Terms to “instantiate” locale parameters with
locale tactic

= Can also now use inherited locale properties outside locale context

lemma "(1 + 2) + (3 ::int) =1 + (2 + 3)"
using ints.assoc by simp

\

Must reference named interpretation

DIAMONDS & MANIPULATING THE INHERITANCE HIERARCHY

= Locales support “inheritance diamonds” basically automatically

semigroup

N

monoid| monoidr

~_

monoid

locale monoidl = semigroup +
fixes unit :: 'a ("1")
assumes unit closed [intro, simp]: "1 € M"
and unitl[intro, simp]: "X € M = 1 - x = x"

locale monoidr = semigroup +
fixes unit :: 'a ("1")
assumes unit closed [intro, simp]: "1 € M"
and unitr[intro, simp]: "X € M — x -1 = x"

locale monoid = monoidl + monoidr

MORE LOCALE KEYWORDS AND CONTEXTS

= When “inheriting” a locale it is possible to pass in the parameter names/syntax you want to use

= The for keyword can be useful for listing even more details (including type names etc, specifying
parameter order etc).

® Proofs inside the locale context use parameters/assumptions naturally

locale submonoid = monoid M "(-)" 1
for N and M and composition (infix1l "-" 70) and unit ("1") +
assumes subset: "N C M"
and sub composition closed: "[a € N; b e N|] = a - b € N"
and sub unit closed: "1 &€ N"
begin -

for declaration

lemma sub [intro, simp]:
"a e N— a e M < Locale context
using subset by blast

end

LOCALE CONTEXTS CONTINUED

= |t is possible to “reopen” the locale context at any time (i.e. you can continue to add to a locale
after its definition, and even in separate theories etc).

context submonoid
context “reopens” begin
locale lemma sub [intro, simpl]:
"a e N— a € M"
using subset by blast
end

= Alemma can also be stated “outside” a locale context, but added via the in keyword

o e s v e

lemma (in submonoid) sub [intro, simpl:
"a e N— a e M"
using subset by blast

LOCAL LOCALE INTERPRETATION

= Locally interpreting a locale is the most common type of interpretation.
= [t gives you an “instance” of a locale to work with in your proof context.
® Locale proof tactics inside the proof also consider local interpretations in the hierarchy

= Particularly useful when working outside a locale context

theorem submonoid transitive:
assumes "submonoid K N composition unit"
and "submonoid N M composition unit"
shows "submonoid K M composition unit"
proof -
interpret K: submonoid K N composition unit by fact
Two local labelled ——*[interpret M: submonoid N M composition unit by fact
interpretations show ?thesis by unfold locales auto
ged

LOCALE PROOF TACTICS

= There are two main tactics for locale proofs: unfold_locales, and intro_locales

= The first unfolds all the locale assumptions (including from locales earlier in the hierarchy) and
discharges any goals where the assumption is already in the proof context.

= The second unfolds only one layer of the locale hierarchy.
m Using these before trying sledgehammer will make your life easier!!!

interpretation ints: semigroup Z plus
apply unfold locales|

Proof state Auto hovering Auto update Update Search:

proof (prove)

goal (2 subgoals):
1. A\ab.ae€eZ — becZ — a+
2. Nabc.aceZ —beZ — c

b € Z
cZ — a+b+c=a+ (b+ c)

DEMO

MODULAR PROOFS

THE CHALLENGE

= |n mathematics/theoretical CS, we often deal with large hierarchies of structures. So:
= How do formalise these/keep track of relationships?

= How do we deal with the same structure occurring in different forms with different notation?

= How can we minimise the need to redo work?

= |n program verification there can be added challenges:
= Sometimes, abstractions are hard (e.g. low-level hardware modelling).
= More complex structures

® |Less consistency/less pretty!

THE SOLUTION

A software engineering-like approach to formalisation

= Type classes and locales (and similar ideas in other proof assistants) are essential as one part of
this approach

= Basically, we need a powerful, but flexible inheritance system.

= Just using these isn’t enough though - we need to use them smartly.

= How do communities manage this?

leanprover-community/
mathlib4

e math library of Lean 4

Au A0 -1 243 T 2k e ke l"':l

NEXT TIME...

= Exercises:

= Types, type classes, and locales.

= Gain familiarity with defining locales/classes and basic proof techniques.
= Formalisation of Mathematics

= More advanced locale reasoning patterns in Isabelle

= |ntroduction to the field of formalisation of mathematics

= Combinatorial case studies

= To come... semantics and refinement examples!

	Default Section
	Slide 1: Lecture 2: Locales, Type classes & Modularity Modular Proofs in Isabelle HOL
	Slide 2: Course OVERVIEW
	Slide 3: Lecture 2 Overview
	Slide 4: ISAR: A Structured Proof Language
	Slide 5: Structured Proofs

	Types
	Slide 6: Some More On TYPES
	Slide 7: Basic Types
	Slide 8: Datatypes
	Slide 9: Type Synonyms, Declarations, and DEFINITIONS
	Slide 10: Pairs
	Slide 11: Record Types
	Slide 12: Demonstration

	Typeclasses
	Slide 13: Type Classes
	Slide 14: Introduction
	Slide 15: Type Class Instance
	Slide 16: Subclass
	Slide 17: Subclass Inheritance Hierarchy
	Slide 18: Demo
	Slide 19: Limitations?
	Slide 20: So what’s the Alternative?

	Intro to Locales
	Slide 21: Locales
	Slide 22: Locale Basics
	Slide 23: LOCALE Basics
	Slide 24: Interpreting A Locale
	Slide 25: Diamonds & Manipulating The Inheritance Hierarchy
	Slide 26: More LOCALE KeyWORDS and Contexts
	Slide 27: Locale Contexts Continued
	Slide 28: Local Locale Interpretation
	Slide 29: Locale Proof Tactics
	Slide 30: Demo

	Modular Proofs
	Slide 31: Modular Proofs
	Slide 32: The Challenge
	Slide 33: The Solution
	Slide 34: Next Time…

