
LECTURE 2: LOCALES, TYPE CLASSES & MODULARITY
MODULAR PROOFS IN ISABELLE HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Midlands Graduate School 2025 |

University of Sheffield

COURSE OVERVIEW

Lectures:

 Introduction to Proof Assistants

 Formalising the basics in Isabelle/HOL

 Introduction to Isar, more types, Locales and Type
classes

 Case studies:

 Formalising Mathematics: Combinatorics & advanced locale reasoning
patterns

 Program Verification: Formalising semantics, program properties, and
introducing modularity/abstraction.

Example Classes:

 Isabelle exercises based on the previous lecture

 Will be drawing from the existing Isabelle tutorials/Nipkow’s
Concrete Semantic Book, as well as custom exercises (e.g. for
locales).

A practical course on

effective use of the

Isabelle/HOL proof assistant

in mathematics and

programming languages

LECTURE 2

OVERVIEW Yesterday: Introduction to proof assistants, and a tour of

Isabelle/HOL.

TODAY:

 Finishing off Isabelle introduction

 A little more on types in Isabelle

 The role of modularity in formalisation

 Intro to Locales and Type-classes

Modular proofs = an

engineering-like approach to

formalisation.

ISAR: A STRUCTURED PROOF LANGUAGE

STRUCTURED PROOFS

 The Isar proof language allows us to do

structured human-readable proofs

 It is also very easy to use! Pick almost any AFP

entry, and you’ll see elements of Isar style

proofs

 Useful for breaking down a theorem into smaller

goals, which may not be useful as their own

lemmas.

 Useful keywords for calculations: (have, also

have, finally) and (have, moreover

have, ultimately)

 Proofs can also be nested

SOME MORE ON TYPES

BASIC TYPES

 Yesterday we introduced datatypes as an example of a user defined type in Isabelle

 Today:

 More datatypes

 Type declarations

 Type Synonyms

 Pairs

 Record types

 And finally … type classes.

DATATYPES

 One common use case of datatypes is an option datatype

 Datatypes can be parameterised by multiple types:

 Datatypes can also be annotated:

 The datatypes (and co-datatypes) tutorial has significantly more information.

Constructors

Discriminator

Selectors

Infix Notation

TYPE SYNONYMS, DECLARATIONS, AND DEFINITIONS

 A type synonym can be useful to make a formalisation more readable/descriptive. E.g.

 declares a parameterised edge type which is the same as a set

 A type declaration declares a new type without defining it

 A type definition allows you to define a new type

 You must prove the type is not empty

 Introduces Rep and Abs properties to convert between reasoning on base type and new type (then you

need to establish useful properties)…

 Or in this case just use a datatype which does the setup for you!

PAIRS

 While functions are usually curried, it is also possible to work with a pair type in Isabelle.

 For example, below is a type synonym which represents a graph that uses a pair

 Built in definitions to access the elements:

RECORD TYPES

 Records are essentially an n-tuple, with labels, a familiar programming language construct

 Each field has a type (which may be polymorphic), field names are part of the record type, and the

order of the fields is important.

 Record types support basic extensions.

DEMONSTRATION
RECORDS AND TYPES

TYPE CLASSES

INTRODUCTION

 Type classes introduce polymorphism and overloading into the Isabelle/HOL infrastructure

 Isabelle type classes are “Haskell-like”. They enable you to*

 Specify abstract parameters together with corresponding specifications

 Instantiate those abstract parameters by a particular type

 In connection with a less ad-hoc approach to overloading

 Link to the Isabelle module system (we’ll get to this later!)

 For more info see the type class tutorial and hierarchy documentation for examples:

https://isabelle.in.tum.de/library/Doc/Typeclass_Hierarchy/typeclass_hierarchy.pdf
*Taken from the Isabelle Type Class Tutorial

Parameters

Specification

Custom Notation

https://isabelle.in.tum.de/library/Doc/Typeclass_Hierarchy/typeclass_hierarchy.pdf

TYPE CLASS INSTANCE

 To instantiate a type class by a particular type an instance proof is required:

Instance Proof

Local def

of param

Can now use type class assumptions

outside class context

Direct Inheritance

 Build directly off an existing class by adding

new parameters and/or assumptions

Indirect Inheritance

 We can use subclass to introduce indirect

inheritance (with a proof)

SUBCLASS

SUBCLASS INHERITANCE HIERARCHY

 The impact of using subclass to manipulate the inheritance hierarchy.

DEMO

LIMITATIONS?

 Type class operations are restricted to a single type parameter, and can only be instantiated in one

way per type:

 E.g. a list may be ordered multiple ways, but can only instantiate an order type class once.

 Parameters are fixed over the whole type class hierarchy and cannot be refined in specific

situations

 Type class inheritance has limitations: e.g. We can’t declare monoidr separately, then try to bring

them together easily.

LOCALES

LOCALE BASICS

 Locales are Isabelle’s module system. From a logical perspective, they are simply

persistent contexts.

.𝑥1…𝑥𝑛ٿ 𝐴1; … ; 𝐴𝑚 ⇒ 𝐶.

 Provides fixed type and term variables and contextual assumptions within a local

context.

 Type classes use and can interact with the underlying locale infrastructure.
Class

Locale inheritance
Same params/assumptions

as before

LOCALE BASICS

 Locales allow us to work explicitly with “carrier sets” (if we want to)

 Think of locales as more of a set-based rather than type-based approach.

Carrier set

INTERPRETING A LOCALE

 Global theory interpretation:

 Can also now use inherited locale properties outside locale context

locale tactic

Label interpretation

Locale being interpreted

Terms to “instantiate” locale parameters with

Must reference named interpretation

DIAMONDS & MANIPULATING THE INHERITANCE HIERARCHY

 Locales support “inheritance diamonds” basically automatically

semigroup

monoidl monoidr

monoid

MORE LOCALE KEYWORDS AND CONTEXTS

 When “inheriting” a locale it is possible to pass in the parameter names/syntax you want to use

 The for keyword can be useful for listing even more details (including type names etc, specifying

parameter order etc).

 Proofs inside the locale context use parameters/assumptions naturally

Locale context

for declaration

LOCALE CONTEXTS CONTINUED

 It is possible to “reopen” the locale context at any time (i.e. you can continue to add to a locale

after its definition, and even in separate theories etc).

 A lemma can also be stated “outside” a locale context, but added via the in keyword

context “reopens”

locale

LOCAL LOCALE INTERPRETATION

 Locally interpreting a locale is the most common type of interpretation.

 It gives you an “instance” of a locale to work with in your proof context.

 Locale proof tactics inside the proof also consider local interpretations in the hierarchy

 Particularly useful when working outside a locale context

Two local labelled

interpretations

LOCALE PROOF TACTICS

 There are two main tactics for locale proofs: unfold_locales, and intro_locales

 The first unfolds all the locale assumptions (including from locales earlier in the hierarchy) and

discharges any goals where the assumption is already in the proof context.

 The second unfolds only one layer of the locale hierarchy.

 Using these before trying sledgehammer will make your life easier!!!

DEMO

MODULAR PROOFS

THE CHALLENGE

 In mathematics/theoretical CS, we often deal with large hierarchies of structures. So:

 How do formalise these/keep track of relationships?

 How do we deal with the same structure occurring in different forms with different notation?

 How can we minimise the need to redo work?

 In program verification there can be added challenges:

 Sometimes, abstractions are hard (e.g. low-level hardware modelling).

 More complex structures

 Less consistency/less pretty!

THE SOLUTION

A software engineering-like approach to formalisation

 Type classes and locales (and similar ideas in other proof assistants) are essential as one part of

this approach

 Basically, we need a powerful, but flexible inheritance system.

 Just using these isn’t enough though – we need to use them smartly.

 How do communities manage this?

NEXT TIME…

 Exercises:

 Types, type classes, and locales.

 Gain familiarity with defining locales/classes and basic proof techniques.

 Formalisation of Mathematics

 More advanced locale reasoning patterns in Isabelle

 Introduction to the field of formalisation of mathematics

 Combinatorial case studies

 To come… semantics and refinement examples!

	Default Section
	Slide 1: Lecture 2: Locales, Type classes & Modularity Modular Proofs in Isabelle HOL
	Slide 2: Course OVERVIEW
	Slide 3: Lecture 2 Overview
	Slide 4: ISAR: A Structured Proof Language
	Slide 5: Structured Proofs

	Types
	Slide 6: Some More On TYPES
	Slide 7: Basic Types
	Slide 8: Datatypes
	Slide 9: Type Synonyms, Declarations, and DEFINITIONS
	Slide 10: Pairs
	Slide 11: Record Types
	Slide 12: Demonstration

	Typeclasses
	Slide 13: Type Classes
	Slide 14: Introduction
	Slide 15: Type Class Instance
	Slide 16: Subclass
	Slide 17: Subclass Inheritance Hierarchy
	Slide 18: Demo
	Slide 19: Limitations?
	Slide 20: So what’s the Alternative?

	Intro to Locales
	Slide 21: Locales
	Slide 22: Locale Basics
	Slide 23: LOCALE Basics
	Slide 24: Interpreting A Locale
	Slide 25: Diamonds & Manipulating The Inheritance Hierarchy
	Slide 26: More LOCALE KeyWORDS and Contexts
	Slide 27: Locale Contexts Continued
	Slide 28: Local Locale Interpretation
	Slide 29: Locale Proof Tactics
	Slide 30: Demo

	Modular Proofs
	Slide 31: Modular Proofs
	Slide 32: The Challenge
	Slide 33: The Solution
	Slide 34: Next Time…

