
LECTURE 2: LOCALES, TYPE CLASSES & MODULARITY
MODULAR PROOFS IN ISABELLE HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Midlands Graduate School 2025 |

University of Sheffield

COURSE OVERVIEW

Lectures:

 Introduction to Proof Assistants

 Formalising the basics in Isabelle/HOL

 Introduction to Isar, more types, Locales and Type
classes

 Case studies:

 Formalising Mathematics: Combinatorics & advanced locale reasoning
patterns

 Program Verification: Formalising semantics, program properties, and
introducing modularity/abstraction.

Example Classes:

 Isabelle exercises based on the previous lecture

 Will be drawing from the existing Isabelle tutorials/Nipkow’s
Concrete Semantic Book, as well as custom exercises (e.g. for
locales).

A practical course on

effective use of the

Isabelle/HOL proof assistant

in mathematics and

programming languages

LECTURE 2

OVERVIEW Yesterday: Introduction to proof assistants, and a tour of

Isabelle/HOL.

TODAY:

 Finishing off Isabelle introduction

 A little more on types in Isabelle

 The role of modularity in formalisation

 Intro to Locales and Type-classes

Modular proofs = an

engineering-like approach to

formalisation.

ISAR: A STRUCTURED PROOF LANGUAGE

STRUCTURED PROOFS

 The Isar proof language allows us to do

structured human-readable proofs

 It is also very easy to use! Pick almost any AFP

entry, and you’ll see elements of Isar style

proofs

 Useful for breaking down a theorem into smaller

goals, which may not be useful as their own

lemmas.

 Useful keywords for calculations: (have, also

have, finally) and (have, moreover

have, ultimately)

 Proofs can also be nested

SOME MORE ON TYPES

BASIC TYPES

 Yesterday we introduced datatypes as an example of a user defined type in Isabelle

 Today:

 More datatypes

 Type declarations

 Type Synonyms

 Pairs

 Record types

 And finally … type classes.

DATATYPES

 One common use case of datatypes is an option datatype

 Datatypes can be parameterised by multiple types:

 Datatypes can also be annotated:

 The datatypes (and co-datatypes) tutorial has significantly more information.

Constructors

Discriminator

Selectors

Infix Notation

TYPE SYNONYMS, DECLARATIONS, AND DEFINITIONS

 A type synonym can be useful to make a formalisation more readable/descriptive. E.g.

 declares a parameterised edge type which is the same as a set

 A type declaration declares a new type without defining it

 A type definition allows you to define a new type

 You must prove the type is not empty

 Introduces Rep and Abs properties to convert between reasoning on base type and new type (then you

need to establish useful properties)…

 Or in this case just use a datatype which does the setup for you!

PAIRS

 While functions are usually curried, it is also possible to work with a pair type in Isabelle.

 For example, below is a type synonym which represents a graph that uses a pair

 Built in definitions to access the elements:

RECORD TYPES

 Records are essentially an n-tuple, with labels, a familiar programming language construct

 Each field has a type (which may be polymorphic), field names are part of the record type, and the

order of the fields is important.

 Record types support basic extensions.

DEMONSTRATION
RECORDS AND TYPES

TYPE CLASSES

INTRODUCTION

 Type classes introduce polymorphism and overloading into the Isabelle/HOL infrastructure

 Isabelle type classes are “Haskell-like”. They enable you to*

 Specify abstract parameters together with corresponding specifications

 Instantiate those abstract parameters by a particular type

 In connection with a less ad-hoc approach to overloading

 Link to the Isabelle module system (we’ll get to this later!)

 For more info see the type class tutorial and hierarchy documentation for examples:

https://isabelle.in.tum.de/library/Doc/Typeclass_Hierarchy/typeclass_hierarchy.pdf
*Taken from the Isabelle Type Class Tutorial

Parameters

Specification

Custom Notation

https://isabelle.in.tum.de/library/Doc/Typeclass_Hierarchy/typeclass_hierarchy.pdf

TYPE CLASS INSTANCE

 To instantiate a type class by a particular type an instance proof is required:

Instance Proof

Local def

of param

Can now use type class assumptions

outside class context

Direct Inheritance

 Build directly off an existing class by adding

new parameters and/or assumptions

Indirect Inheritance

 We can use subclass to introduce indirect

inheritance (with a proof)

SUBCLASS

SUBCLASS INHERITANCE HIERARCHY

 The impact of using subclass to manipulate the inheritance hierarchy.

DEMO

LIMITATIONS?

 Type class operations are restricted to a single type parameter, and can only be instantiated in one

way per type:

 E.g. a list may be ordered multiple ways, but can only instantiate an order type class once.

 Parameters are fixed over the whole type class hierarchy and cannot be refined in specific

situations

 Type class inheritance has limitations: e.g. We can’t declare monoidr separately, then try to bring

them together easily.

LOCALES

LOCALE BASICS

 Locales are Isabelle’s module system. From a logical perspective, they are simply

persistent contexts.

.𝑥1…𝑥𝑛ٿ 𝐴1; … ; 𝐴𝑚 ⇒ 𝐶.

 Provides fixed type and term variables and contextual assumptions within a local

context.

 Type classes use and can interact with the underlying locale infrastructure.
Class

Locale inheritance
Same params/assumptions

as before

LOCALE BASICS

 Locales allow us to work explicitly with “carrier sets” (if we want to)

 Think of locales as more of a set-based rather than type-based approach.

Carrier set

INTERPRETING A LOCALE

 Global theory interpretation:

 Can also now use inherited locale properties outside locale context

locale tactic

Label interpretation

Locale being interpreted

Terms to “instantiate” locale parameters with

Must reference named interpretation

DIAMONDS & MANIPULATING THE INHERITANCE HIERARCHY

 Locales support “inheritance diamonds” basically automatically

semigroup

monoidl monoidr

monoid

MORE LOCALE KEYWORDS AND CONTEXTS

 When “inheriting” a locale it is possible to pass in the parameter names/syntax you want to use

 The for keyword can be useful for listing even more details (including type names etc, specifying

parameter order etc).

 Proofs inside the locale context use parameters/assumptions naturally

Locale context

for declaration

LOCALE CONTEXTS CONTINUED

 It is possible to “reopen” the locale context at any time (i.e. you can continue to add to a locale

after its definition, and even in separate theories etc).

 A lemma can also be stated “outside” a locale context, but added via the in keyword

context “reopens”

locale

LOCAL LOCALE INTERPRETATION

 Locally interpreting a locale is the most common type of interpretation.

 It gives you an “instance” of a locale to work with in your proof context.

 Locale proof tactics inside the proof also consider local interpretations in the hierarchy

 Particularly useful when working outside a locale context

Two local labelled

interpretations

LOCALE PROOF TACTICS

 There are two main tactics for locale proofs: unfold_locales, and intro_locales

 The first unfolds all the locale assumptions (including from locales earlier in the hierarchy) and

discharges any goals where the assumption is already in the proof context.

 The second unfolds only one layer of the locale hierarchy.

 Using these before trying sledgehammer will make your life easier!!!

DEMO

MODULAR PROOFS

THE CHALLENGE

 In mathematics/theoretical CS, we often deal with large hierarchies of structures. So:

 How do formalise these/keep track of relationships?

 How do we deal with the same structure occurring in different forms with different notation?

 How can we minimise the need to redo work?

 In program verification there can be added challenges:

 Sometimes, abstractions are hard (e.g. low-level hardware modelling).

 More complex structures

 Less consistency/less pretty!

THE SOLUTION

A software engineering-like approach to formalisation

 Type classes and locales (and similar ideas in other proof assistants) are essential as one part of

this approach

 Basically, we need a powerful, but flexible inheritance system.

 Just using these isn’t enough though – we need to use them smartly.

 How do communities manage this?

NEXT TIME…

 Exercises:

 Types, type classes, and locales.

 Gain familiarity with defining locales/classes and basic proof techniques.

 Formalisation of Mathematics

 More advanced locale reasoning patterns in Isabelle

 Introduction to the field of formalisation of mathematics

 Combinatorial case studies

 To come… semantics and refinement examples!

	Default Section
	Slide 1: Lecture 2: Locales, Type classes & Modularity Modular Proofs in Isabelle HOL
	Slide 2: Course OVERVIEW
	Slide 3: Lecture 2 Overview
	Slide 4: ISAR: A Structured Proof Language
	Slide 5: Structured Proofs

	Types
	Slide 6: Some More On TYPES
	Slide 7: Basic Types
	Slide 8: Datatypes
	Slide 9: Type Synonyms, Declarations, and DEFINITIONS
	Slide 10: Pairs
	Slide 11: Record Types
	Slide 12: Demonstration

	Typeclasses
	Slide 13: Type Classes
	Slide 14: Introduction
	Slide 15: Type Class Instance
	Slide 16: Subclass
	Slide 17: Subclass Inheritance Hierarchy
	Slide 18: Demo
	Slide 19: Limitations?
	Slide 20: So what’s the Alternative?

	Intro to Locales
	Slide 21: Locales
	Slide 22: Locale Basics
	Slide 23: LOCALE Basics
	Slide 24: Interpreting A Locale
	Slide 25: Diamonds & Manipulating The Inheritance Hierarchy
	Slide 26: More LOCALE KeyWORDS and Contexts
	Slide 27: Locale Contexts Continued
	Slide 28: Local Locale Interpretation
	Slide 29: Locale Proof Tactics
	Slide 30: Demo

	Modular Proofs
	Slide 31: Modular Proofs
	Slide 32: The Challenge
	Slide 33: The Solution
	Slide 34: Next Time…

