

LECTURE 1: INTRODUCING PROOF ASSISTANTS & ISABELLE/HOL MODULAR PROOFS IN ISABELLE HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Midlands Graduate School 2025

University of Sheffield

COURSE OVERVIEW

A practical course on effective use of the Isabelle/HOL proof assistant in mathematics and programming languages

Lectures:

- Introduction to Proof Assistants
- Formalising the basics in Isabelle/HOL
- Introduction to Isar, more types, Locales and Type-classes
- Case studies:
 - Formalising Mathematics: Combinatorics & advanced locale reasoning patterns
 - Program Verification: Formalising semantics, program properties, and introducing modularity/abstraction.

Example Classes:

- Isabelle exercises based on the previous lecture
- Will be drawing from the existing Isabelle tutorials/Nipkow's Concrete Semantic Book, as well as custom exercises (e.g. for locales).

Acknowledgement: Slides partially inspired by slides/notes by Larry Paulson, Tobias Nipkow, Gerwin Klein, Clemens Ballarin, Georg Struth, Andrei Popescu (and many more who've come before me!)

PRE-REQUISITE KNOWLEDGE

- No prior proof assistance is assumed:
 - If you've used Isabelle before, perhaps this will offer a new perspectivecloser look at certain features
 - If you've used other proof assistants before, there'll be plenty of Isabelle specific concepts as well as more familiar ones.
 - We'll discuss topics that are both Isabelle specific and more general in the proof assistant landscape.
- What is assumed:
 - Some familiarity with functional programming
 - Basic logic, discrete maths, some semantics (for the last lecture).

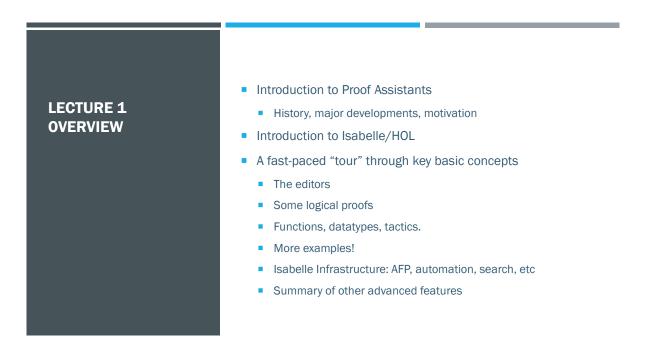
A DISCLAIMER

This course IS...

...unashamedly a course on the practical use of proof assistants and in particular, Isabelle/HOL

Main course goals:

- Be able to use Isabelle to start your own project/keep learning yourself.
- Understand the importance of modularity in formal proof and use important tools/advanced proof techniques in Isabelle/HOL to manage such modularity
- Understand the role proof assistants can play in several areas of foundations research


This course IS NOT:

- A type theory course
- A course on the details of all proof assistants (or for that matter, even all the details of Isabelle/HOL!).
- An introduction to a particular foundational concept which only uses Isabelle for exercises

COURSE RESOURCES

Documentation

- See the course website for slides, notes, and exercises:
- https://cledmonds.github.io/mgs2025/
- Will be updated throughout this week!
- Other useful resources:
 - The official documentation (particularly prog-prove & locales tutorials): Comes with Isabelle distribution
 - Tobias Nipkow and Gerwin Klein's Concrete Semantics Book: <u>http://concrete-semantics.org/</u>
 - Machine Logic Blog: Interesting exploration of Isabelle and history by Larry Paulson - <u>https://lawrencecpaulson.github.io/</u>

INTRODUCTION TO PROOF ASSISTANTS

PROOF ASSISTANTS

- Interactive proof assistants allow us to prove theorems in a logical formalism:
 - With precise definitions of concepts
 - A formal deductive system
 - And (hopefully) automated tools
- We can create hierarchies of definitions and proofs
 - Specifications of components and properties
 - Proofs that designs meet their requirements.
- Interactive = "guided" by a human user to produce a formalisation or mechanisation.

WHY FORMALISE?

WHY FORMALISE?

A very simple example

Are the proofs below correct? Are they valid theorems to begin with?

 $(P \rightarrow Q), (Q \rightarrow R) \vdash R$

1.
$$(P \rightarrow Q)$$
 hyp
2. $(Q \rightarrow R)$ hyp
3. P hyp
4. Q $(\rightarrow E), 1, 3$
5. R $(\rightarrow E), 2, 4$
6. $P \rightarrow R$ $(\rightarrow I)$ 3-5
7. R $(\rightarrow E)$ 6,3

1.

1.
$$\forall x \exists y P(x, y)$$
 hyp
2. $\exists y P(a, y)$ ($\forall E$) 1

3.
$$P(a, b)$$
 ($\exists E$) 2
4. $\forall x P(x, b)$ ($\forall I$) 3

5. $\exists y \forall x P(x, y) \quad (\exists I) 4$

 $\forall x \exists y P(x, y) \vdash \exists x \forall y P(x, y) \qquad (P \land Q) \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$

1.	$(P \land Q) \rightarrow R$	hyp
2.	Р	hyp
3.	Q	hyp
4.	$P \wedge Q$	(∧ <i>E</i> /) 2, 3
5.	R	$(\rightarrow E)$ 1, 4
6.	Q ightarrow R	(→ <i>I</i>) 3-5
7.	P ightarrow Q ightarrow R	(→1) 2-6

10

WHY FORMALISE?

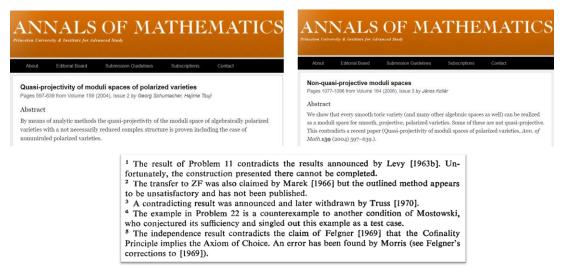
A very simple example

1.
$$(P \rightarrow Q)$$
 hyp
2. $(Q \rightarrow R)$ hyp
3. P hyp
4. Q $(\rightarrow E), 1,$
5. R $(\rightarrow E), 2,$
6. $P \rightarrow R$ $(\rightarrow I)$ 3-5
7. R $(\rightarrow E)$ 6.3

3 4

 $(P \rightarrow Q), (Q \rightarrow R) \vdash R$

NOT A THEOREM! $(\rightarrow E)$ at 7


$\forall x \exists y P(x, y) \vdash \exists x \forall y P(x, y)$		
1.	$\forall x \exists y P(x, y)$	hyp
2.	∃ <i>y</i> P(<i>a</i> , <i>y</i>)	(∀E) 1
3.	P(a, b)	(∃ <i>E</i>) 2
4.	$\forall x P(x, b)$	(∀/) 3
5.	$\exists y \forall x P(x, y)$	(∃/) 4
NOT	A THEOREM!	(∃ <i>E</i>) at 3

 $(P \land Q) \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$

1.	$(P \land Q) \to R$	hyp
2.	Р	hyp
3.	Q	hyp
4.	$P \wedge Q$	(<i>∧El</i>) 2, 3
5.	R	(→E) 1, 4
6.	Q ightarrow R	(→ <i>I</i>) 3-5
7.	P ightarrow Q ightarrow R	(→1) 2-6

PROOF ERROR: $(\land I)$ at 4

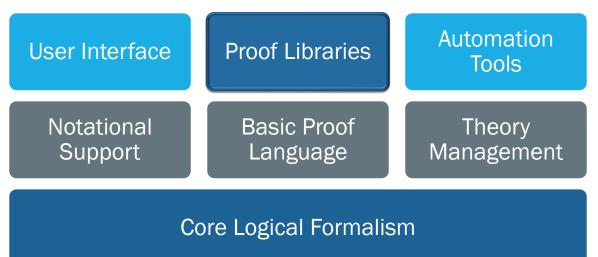
WHY FORMALISE?

*Footnotes on page 118 of Jech's The Axiom of Choice (1973)

WHY FORMALISE?

To validate complex proofs

To reveal hidden assumptions & proof steps



To create central libraries of verified mathematical/CS knowledge

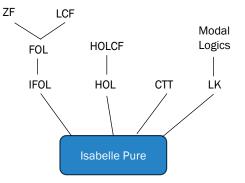
To benefit from advances in automation and technology

PROOF ASSISTANT COMPONENTS

SOME HISTORY

- Automath (de Bruijn, 1968): The first! Novel type theory. Formalised the construction of the reals.
- Mizar (Trybulec, 1973): Set theory with "soft typing". Structured formal language
- Rocq (Coq) (Coquand and Huet et al, 1984): Dependent type theory.
- HOL [Light] (Gorden, 1988, Harrison, 1992): Simple type theory/Higher-order logic. First to verify real analysis.
- **Isabelle[HOL]** (Paulson, 1986): Isabelle is a generic proof assistant. Its main instance is simple type theory/higher order logic.
- Agda (Coquand, 1999, Ulf, 2007): A dependently typed functional programming language, that is also a proof assistant. Based on Intuitionistic type theory.
- Lean (de Moura et al, 2015): Dependent type theory. Has a strong community for formalised maths.
- And many more ...

THE ISABELLE PROOF ASSISTANT



ISABELLE	theorem assumes "prime p" shows "sqrt $p \neq Q$ " proof	
OVERVIEW	from $< prime p > have p$: "1 < p" by (simp add: prime_def) assume 'sgrt p $\in \mathbb{Q}^{+}$	
	then obtain n n :: nat where	
 Simple type theory/HOL 	<pre>n: "r ≠ 0" and sqrt_rat: "isqrt p; = m / n" and "coprime m n" by (rule Rats_abs_nat_div_natE) have eq: "n² = p * n²"</pre>	
 Sledgehammer – automated proof search. 	proof - from n and sqrt_rat have "m = [sqrt p] * n" by simp then show 'm ² = $p \le n^{2n}$	
 Counter-example generators 	<pre>by {metis abs_of_nat of_nat_eq_iff of_nat_mult power2_eq_square real_sqrt_abs2 rea ged</pre>	
 Search tools: Query Search, Find Facts, SErAPIS 	have "p dvd n p dvd p" proof from ec have "p dvd m ² sledgehammer proofs	
The Isar structured proof language	<pre>with <prime p=""> show "p dvd m" by (rule prime_dvd_power_nat) then obtain k where "m = p * k"</prime></pre>	
 Jedit/VS Codium IDE 	<pre>with ec have "p * n² = p² * k²" by (auto simp add: power2_eq_square ac_simps) with -prime p> show "p dvd n" by (metis dvd_triv_left nat_mult_dvd_cancell power2_ec_square prime_dvd_power_nat qed</pre>	
 Extensive existing libraries in Maths & Computer Science (AFP) 		
	<pre>then have "p dvd gcd m n" by simp with <coprime m="" n=""> have "p = 1" by simp</coprime></pre>	
 Additional features: Code generation, 	with p show False by simp	
documentation generation	qed	

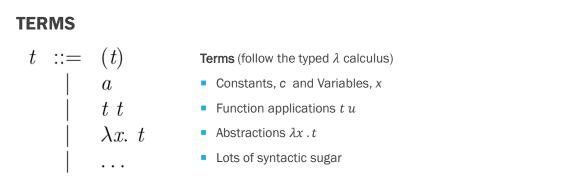
18

ISABELLES FAMILY OF LOGICS

- Isabelle is a *generic* theorem prover
- Overtime, several different logics have been developed – Isabelle/HOL is by far the most widely used.

19

ISABELLE/HOL FOUNDATIONS


- Isabelle/HOL is based on a Higher-Order logic (i.e. simple type theory)
 - First order logic extended with functions and sets.
 - Extended to also incorporate rank-1 polymorphism (we'll get to type classes later!).
 - ML-style functional programming.
- Often introduced as HOL
- Variation of Gordon's HOL (also led to the logic behind HOL4/HOL Light)

BASIC TYPES / TERMS / FUNCTIONS

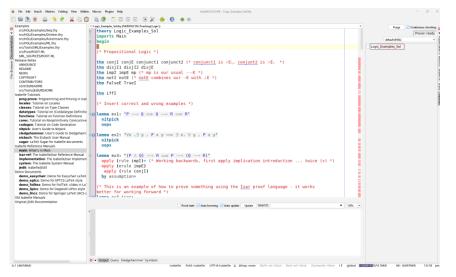
-Postfix types have precedence over function types (i.e. $'a \Rightarrow 'b \ list$ means $'a \Rightarrow ('b \ list)$)

- i.e. The language of terms is a simply type λ calculus, noting Isabelle performs β -reduction $((\lambda x. t) u$ to t[u/x]) automatically.
- Terms must be well-typed $(t :: \tau)$
- Isabelle automatically computers the type of each variable in a term (type inference), except for overloaded functions where type annotations can be useful.

ISABELLE'S META LOGIC

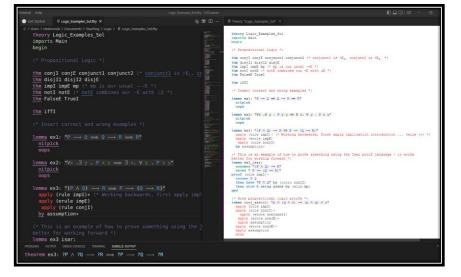
- Implication: \Rightarrow
 - For separating premises and conclusions of theorems
- Equality \equiv
 - For definitions
- Universal Quantifier ∧
 - For binding local variables

Do not use inside HOL formula!


Logically the same meaning, but differences is usability/automation

NB: The Metalogic, has itself been formalised! https://www.isa-afp.org/entries/Metalogic_ProofChecker.html

23


EDITORS

ISABELLE JEDIT

Includes the most customised support for Isabelle developments

ISABELLE VSCODE

New VSCode based editor

- Must use instance in the Isabelle download
- Start via:

"isabelle vscode"

- Nice html preview
- Many less Isabelle features than jedit
- Don't use the old VSCode extension

26

Course Notes: Modular Proofs in Isabelle/HOL

INTRODUCTION BY EXAMPLE

1. BOOLEAN LOGIC AND FUNCTIONS

FUNCTIONS/DATATYPES

DATATYPES

- Functional style datatypes
- Generates lots of useful facts/properties:
 - distinctness and injectivity (applied automatically).
 - Induction (needs to be applied)

```
datatype 'a mylist = Nill | Consl 'a " 'a mylist"
thm mylist.induct
thm mylist.case
```

FUNCTIONS & DEFINITIONS

- All Functions must be total!
- Fun termination proved automatically (most things we'll deal with),

fun app :: "'a mylist \Rightarrow 'a mylist \Rightarrow 'a mylist" where "app Nill ys = ys" | "app (Consl x xs) ys = Consl x (app xs ys)"

- Function user supplied termination proof.
- Definition: non-recursive definitions

definition prime :: "nat \Rightarrow bool" where "prime p = (1 \land (\forall m. m dvd p \longrightarrow m = 1 \lor m = p))"

Recursive functions have more built in facts that are useful in proofs than a definition.

TACTICS

AUTO VS SIMP

Auto

- auto applies simp rules + all obvious logical steps, e.g.:
 - Splitting conjunctive goals and disjunctive assumptions
 - Performing obvious quantifier removal
- It operates on all subgoals
- Designated intro and elimination rules included in this

Simp

- Simp performs rewriting (along with simple arithmetic simplification)
- It only operates on the first subgoal
- Some facts are included in the simplifier
- Other facts are often useful, e.g. for arithmetic, consider trying the following:
 - algebra_simps
 - field_simps
 - divide_simps

MORE REWRITING

- Simp rules work left to right, i.e. at each step transform the LHS into the RHS
- Isabelle enables you to add rules to the simplifier by declaring them as such
- Rewrite rules can be conditional (and are applied if the conditions can themselves be recursively proved via simplification)
- But! We need to be careful to avoid loops.
 - The following pair of "simp" rules would cause issues:

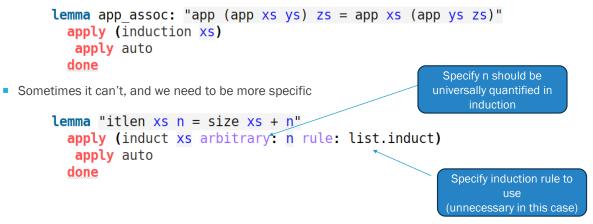
$$f(x) = h(g(x)), g(x) = f(x+2)$$

• Permutative rewrite rules (e.g. x + y = y + x) are applied but only if they make the term "lexicographically smaller"

VARIATIONS ON SIMP/AUTO

- Add a fact (once-off) to be used for simplification: simp add: app_assoc
- Omit a fact (once-off) from simplification: simp del: rev_rev
- Don't simplify the assumptions: simp (no_asm_simp)
- Ignore the assumptions: simp (no_asm)
- Simplify all the subgoals: simp_all
- Add rewriting rules/introduction rules etc to auto: auto simp add: ... intro: ...
- You can combine many of these!

SIMP TRACE

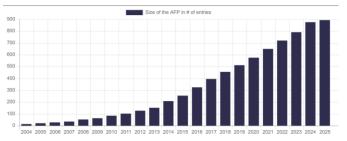

Insert: using [[simp_trace]] (inline proof) or declare [[simp_trace]] (theory wide)
<pre>lemma ordered merge[simp]: "ordered (merge xs ys) = (ordered xs \land ordered ys)" apply (induct xs ys rule: merge.induct) a apply simp_all using [[simp_trace]] apply [[suto : list.split : ordered.simps(2)] done</pre>
🖉 Porefinate 🤇 Anto specific and the second of the secon
[0]Adding rewrite rule "triy forall_equality": (∧x, PROP 7V) = PROP 7V
1)SIMPLIFIER INVOKED ON THE FOLLOWING TERM:
$\Lambda x x y y s$.
$(x \le y \Longrightarrow$
ordered (merge xs (y # ys)) = (ordered xs \land (case ys of [] \Rightarrow True ya # xs \Rightarrow y (\neg x < γ \Rightarrow
$(\neg x \geq y) = 0$ ordered (merge (x # xs) ys) = ((case xs of [] \Rightarrow True y # xs \Rightarrow x < y \land ordered
$(x \le y \rightarrow z)$
(case merge xs (y # ys) of [] \Rightarrow True y # xs \Rightarrow x \leq y \land ordered (y # xs)) =
$((\text{case xs of } [] \Rightarrow \text{True } y \# xs \Rightarrow x \le y \land \text{ordered } (y \# xs)) \land$
(case ys of [] \Rightarrow True ya # xs \Rightarrow y \leq ya \land ordered (ya # xs))) \land (\neg x < y \rightarrow
(case merge (x # xs) ys of [] \Rightarrow True ya # xs \Rightarrow y \leq ya \land ordered (ya # xs)) =
((case xs of [] \Rightarrow True y # xs \Rightarrow x \leq y \land ordered (y # xs)) \land
(case ys of [] \Rightarrow True ya # xs \Rightarrow y \leq ya \land ordered (ya # xs))))
[1]Adding rewrite rule "??.??.unknowm": ¬ xa < ya ⇒
$\neg xa \leq ya \Longrightarrow$ ordered (merge (xa # xsb) ysb) = (case xsb of [] \Rightarrow True y # xs \Rightarrow xa \leq y \land ordered
[1]Adding rewrite rule "??.??.unknown":
$xa \le ya \equiv True$
[1]Applying congruence rule:
ysb ≡ ?list' ⇒
Duligut Query (Stedgeharmer (Symbols

MORE TACTICS

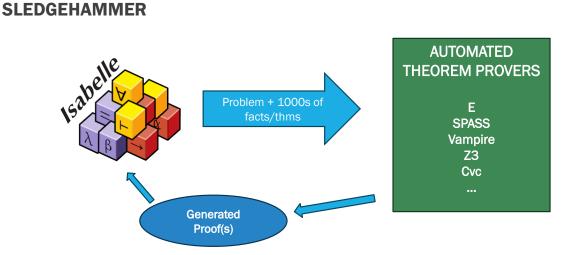
- Basic tactics such as rule, erule, assumption, intro, elim, used in conjunction with a known fact
- These can often be combined with auto/simp (like other variations of simp)
- We also have other automated tactics:
 - force, fastforce
 - blast: uses intro + elimination rules with powerful search heuristics (not simplification/arithmetic reasoning) and won't terminate if it doesn't work
 - Arithmetic tactics: arith, linarith
 - Use of tactics like "metis" and "smt" often indicate use of sledgehammer
- Other good tactics for starting a proof (less powerful, but safer): safe, clarify, standard
- And many more tactics: cases, split ...
- Tactics can be combined e.g. by (induction) (blast | fastforce)+ applies induction then repeatedly shows the subgoals using either blast or fastforce

INDUCTION

- Inductive tactics are well-developed with many options for application.
- The induction tactic tries to figure out what to do automatically:



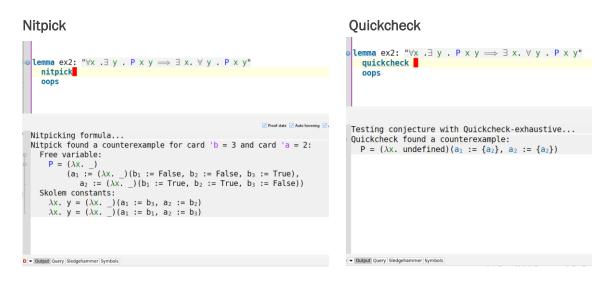
37


USEFUL FEATURES

THE ISABELLE AFP

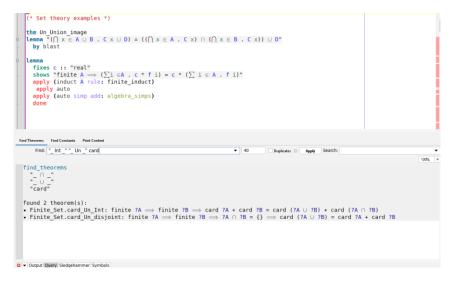
- A significant archive of (refereed) formalised mathematics and computer science concepts.
 - More of an "archive" than a constantly modified "library"
- https://www.isa-afp.org/
- It can be easily imported into a local instance of Isabelle by adding it as a component, see here: <u>https://www.isa-afp.org/help/</u>
- Over 4.5 million lines of code across 894 entries and still growing!

39


SLEDGEHAMMER

by (metis add.simps(2)) (* Sledgehammer generated proof: <u>Metis</u> <u>Provens</u> ordSventzlespassvampre apperposition • hav found a proof zds found a proof zds found a proof rds found a proof rds found a proof mpire: Try this: by (metis add.simps(2)) (0.0 ms) mit found a proof sass: Duplicate proof zds: Duplicate proof	is a proof tactic, often generated by Sle speech ⊘Trymethod: ○ Apply Cancel Locat 100% +
found a proof zc5 found a proof magire found a proof (z5 found a proof (z5 found a proof pperposition found a proof mpire: Try this: by (metis add.simps(2)) (0.0 ms) arit found a proof ass: bublicate proof	nr proofs 🧭 Try methods 💿 🛛 Apply Cancel Locate 100% 🗢
<pre>rcds found a proof mapire found a proof mapire found a proof proof pperposition found a proof mpire: Try this: by (metis add.simps(2)) (0.0 ms) rrit found a proof mass: Duplicate proof</pre>	
pass found a proof yc5 found a proof hyperposition found a proof mpire: Try this: by (metis add.simps(2)) (0.0 ms) prit found a proof ass: buplicate proof	
<pre>mpire found a proof ycs found a proof pperposition found a proof mpire: Try this: by (metis add.simps(2)) (0.0 ms) rrit found a proof ass: Duplicate proof</pre>	
vc5 found a proof ipperposition found a proof mpire: Try this: by (metis add.simps(2)) (0.0 ms) prit found a proof ass: Duplicate proof	
ipperposition found a proof mpire: Try this: by (metis add.simps(2)) (0.0 ms) erit found a proof ass: Duplicate proof	
<pre>smpire: Try this: by (metis add.simps(2)) (0.0 ms) rit found a proof ass: Duplicate proof</pre>	
erit found a proof bass: Duplicate proof	
unE. Duplicate seenf	
ipperposition: Duplicate proof	
Duplicate proof	
erit: Duplicate proof /c5: Duplicate proof	
one	

- Simplify the goal and break down into pieces
- Sledgehammer doesn't prove the goal, but returns a "proof" which is a call to metis, smt, blast, auto etc...
- Translations are not sound, hence sledgehammer provided proof may not work when inserted.
- Generated proofs can be ugly/messy
 there are usually cleaner ways!
- For more history: https://lawrencecpaulson.github.io/2022/04/13/Sledgehammer.html
- For a more technical overview: <u>https://www.cl.cam.ac.uk/~lp15/papers/Automation/paar.pdf</u> (or many of Jasmin Blanchette's papers for more recent work).


41

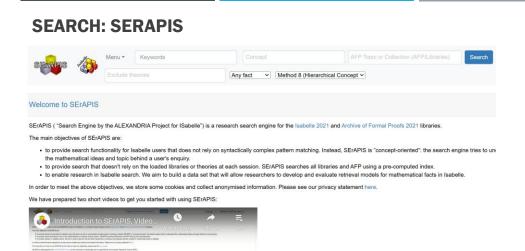
COUNTER EXAMPLE

42

SEARCH: QUERY

SEARCH: FINDFACTS

SEARCH	HELP	EXAMPLES	FEEDBACK	ABOU
		Index default (sabelle2024 / A	FF *
ls				
Constant (10) Fact (21)				
ConcurrentIMP (6) HOL-IMP (18) IMP2 (7) IMP_Noninterference (1)				
CIMP_lang (1) CIMP_vcg (5) Def_Init_Small (4) Definitions (1) Finite_Ref Small_Step (10) Types (3) Type	eachable (1) Semantice	; (7)	
	ConcurrentIMP (6) HOL-IMP (18) IMP2 (7) IMP_Noninterference (1) CIMP_Jang (1) CIMP_vrog (5) Def_Init_Small (4) Definitions (1) Finite_R	Constant (10) Fact (21) ConcurrentMP (0) HOL KMP (10) MMP2 (2) MMP.Monitorference (1) CMMP.Jarg (1) CMMP.vog (5) Orf.Jost.Small (4) Defension (1) Finite.Reschable (default () S Constant (10) Fect (21) Constant (10) Fect (21) Fect (2	default (habelele2024 / / default (habelele2024 / / s ts Constant (10) Fact (21) Constant (10) Fact (21) Constant (10) MP2 (2) MP2 Aussisterference (1) Constant (10) CMP3 (3) Def. Inst. Stati (4) Defensions (1) Field. Backable (1) Semantics (2)


https://search.isabelle.in.tum.de/

OR Local Database with Isabelle2025

isabelle find_facts_server -p 8080 -o find_facts_database_name=isabelle

32 Blocks	Found
-----------	-------

MPlimants 206 fun smil.step :: "program → com × state - com × state" where 217 "small.step m (x[i]::=a,a) = Some (SKIP, s(x := (s x)(aval is := aval a s)))" 228 | "small.step m (x[i::=y,g) = Some (SKIP, s(x := s y))"

https://behemoth.cl.cam.ac.uk/search/ Note: Last AFP Index was in 2021

45

OTHER COOL FEATURES

- Code Generation
- Document Preparation
- Lifting and Transfer
- Eisbach => Proof Method language
- Polymorphism (Type classes) and a powerful module system (Locales)

NEXT TIME...

- Example Class:
 - Get started with Isabelle: Logic and function proofs
 - Test out sledgehammer for yourself
 - Try out different tactics
 - Gain familiarity with Isabelle tools
- Next Lecture
 - Starting on modularity!
 - Finish off your "tour" overview of Isabelle with the Isar proof language and more advanced types
 - Introducing type classes and locales
- To come... more advanced case studies in mathematics and program verification!