
07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 1

Course Notes: Modular Proofs in
Isabelle/HOL

LECTURE 1: INTRODUCING PROOF ASSISTANTS & ISABELLE/HOL
MODULAR PROOFS IN ISABELLE HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Midlands Graduate School 2025

University of Sheffield

COURSE OVERVIEW

Lectures:

 Introduction to Proof Assistants

 Formalising the basics in Isabelle/HOL

 Introduction to Isar, more types, Locales and Type-classes

 Case studies:

 Formalising Mathematics: Combinatorics & advanced locale reasoning
patterns

 Program Verification: Formalising semantics, program properties, and
introducing modularity/abstraction.

Example Classes:

 Isabelle exercises based on the previous lecture

 Will be drawing from the existing Isabelle tutorials/Nipkow’s
Concrete Semantic Book, as well as custom exercises (e.g. for
locales).

Acknowledgement: Slides partially inspired by slides/notes by Larry
Paulson, Tobias Nipkow, Gerwin Klein, Clemens Ballarin, Georg Struth,
Andrei Popescu (and many more who’ve come before me!)

A practical course on

effective use of the

Isabelle/HOL proof assistant

in mathematics and

programming languages

1

2

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 2

Course Notes: Modular Proofs in
Isabelle/HOL

PRE-REQUISITE

KNOWLEDGE

 No prior proof assistance is assumed:

 If you’ve used Isabelle before, perhaps this will offer a new

perspectivecloser look at certain features

 If you’ve used other proof assistants before, there’ll be plenty of

Isabelle specific concepts as well as more familiar ones.

 We’ll discuss topics that are both Isabelle specific and more general

in the proof assistant landscape.

 What is assumed:

 Some familiarity with functional programming

 Basic logic, discrete maths, some semantics (for the last lecture).

This course IS…

…unashamedly a course on the practical use of
proof assistants and in particular, Isabelle/HOL

Main course goals:

- Be able to use Isabelle to start your own
project/keep learning yourself.

- Understand the importance of modularity in
formal proof and use important
tools/advanced proof techniques in
Isabelle/HOL to manage such modularity

- Understand the role proof assistants can play
in several areas of foundations research

This course IS NOT:

- A type theory course

- A course on the details of all proof

assistants (or for that matter, even all the

details of Isabelle/HOL!).

- An introduction to a particular foundational

concept which only uses Isabelle for

exercises

A DISCLAIMER ….

3

4

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 3

Course Notes: Modular Proofs in
Isabelle/HOL

COURSE

RESOURCES

 Documentation

 See the course website for slides, notes, and exercises:

 https://cledmonds.github.io/mgs2025/

 Will be updated throughout this week!

 Other useful resources:

 The official documentation (particularly prog-prove & locales

tutorials): Comes with Isabelle distribution

 Tobias Nipkow and Gerwin Klein’s Concrete Semantics Book:

http://concrete-semantics.org/

 Machine Logic Blog: Interesting exploration of Isabelle and history by

Larry Paulson - https://lawrencecpaulson.github.io/

LECTURE 1

OVERVIEW

 Introduction to Proof Assistants

 History, major developments, motivation

 Introduction to Isabelle/HOL

 A fast-paced “tour” through key basic concepts

 The editors

 Some logical proofs

 Functions, datatypes, tactics.

 More examples!

 Isabelle Infrastructure: AFP, automation, search, etc

 Summary of other advanced features

5

6

https://cledmonds.github.io/mgs2025/
http://concrete-semantics.org/
https://lawrencecpaulson.github.io/

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 4

Course Notes: Modular Proofs in
Isabelle/HOL

INTRODUCTION TO PROOF ASSISTANTS

PROOF ASSISTANTS

 Interactive proof assistants allow us to prove theorems in a logical formalism:

 With precise definitions of concepts

 A formal deductive system

 And (hopefully) automated tools

 We can create hierarchies of definitions and proofs

 Specifications of components and properties

 Proofs that designs meet their requirements.

 Interactive = “guided” by a human user to produce a formalisation or mechanisation.

7

8

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 5

Course Notes: Modular Proofs in
Isabelle/HOL

WHY FORMALISE?

A very simple example ….

9

10

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 6

Course Notes: Modular Proofs in
Isabelle/HOL

WHY FORMALISE?

A very simple example ….

WHY FORMALISE?

*Footnotes on page 118 of Jech’s The Axiom of Choice (1973)

11

12

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 7

Course Notes: Modular Proofs in
Isabelle/HOL

WHY FORMALISE?

To validate complex proofs

To reveal hidden

assumptions & proof

steps

To create central libraries of

verified mathematical/CS

knowledge

To benefit from advances

in automation and

technology

PROOF ASSISTANT COMPONENTS

Core Logical Formalism

Notational
Support

User Interface

Basic Proof
Language

Proof Libraries

Theory
Management

Automation
Tools

13

14

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 8

Course Notes: Modular Proofs in
Isabelle/HOL

SOME HISTORY

 Automath (de Bruijn, 1968): The first! Novel type theory. Formalised the construction of the reals.

 Mizar (Trybulec, 1973): Set theory with “soft typing”. Structured formal language

 Rocq (Coq) (Coquand and Huet et al, 1984): Dependent type theory.

 HOL [Light] (Gorden, 1988, Harrison, 1992): Simple type theory/Higher-order logic. First to verify

real analysis.

 Isabelle[HOL] (Paulson, 1986): Isabelle is a generic proof assistant. Its main instance is simple

type theory/higher order logic.

 Agda (Coquand, 1999, Ulf, 2007): A dependently typed functional programming language, that is

also a proof assistant. Based on Intuitionistic type theory.

 Lean (de Moura et al, 2015): Dependent type theory. Has a strong community for formalised

maths.

 And many more …

THE ISABELLE PROOF ASSISTANT

15

16

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 9

Course Notes: Modular Proofs in
Isabelle/HOL

THE ISABELLE PROOF ASSISTANT

ISABELLE

OVERVIEW

 Simple type theory/HOL

 Sledgehammer – automated proof

search.

 Counter-example generators

 Search tools: Query Search, Find Facts,

SErAPIS

 The Isar structured proof language

 Jedit/VS Codium IDE

 Extensive existing libraries in Maths &

Computer Science (AFP)

 Additional features: Code generation,

documentation generation …

17

18

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 10

Course Notes: Modular Proofs in
Isabelle/HOL

ISABELLES FAMILY OF LOGICS

Isabelle Pure

HOL

HOLCF

CTT LKIFOL

FOL

ZF LCF

Modal

Logics

 Isabelle is a generic theorem prover

 Overtime, several different logics have been

developed – Isabelle/HOL is by far the most

widely used.

ISABELLE/HOL FOUNDATIONS

 Isabelle/HOL is based on a Higher-Order logic (i.e. simple type theory)

 First order logic extended with functions and sets.

 Extended to also incorporate rank-1 polymorphism (we’ll get to type classes later!).

 ML-style functional programming.

 Often introduced as HOL

 Variation of Gordon’s HOL (also led to the logic behind HOL4/HOL Light)

19

20

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 11

Course Notes: Modular Proofs in
Isabelle/HOL

BASIC TYPES / TERMS / FUNCTIONS

 Base types

 Type variables

 Function types

 Pairs

 Lists

 Sets

 User defined types

-Postfix types have precedence over function types (i.e. ′𝑎 ⇒ ′𝑏 𝑙𝑖𝑠𝑡 means ′𝑎 ⇒ (′𝑏 𝑙𝑖𝑠𝑡))

TERMS

Terms (follow the typed 𝜆 calculus)

 Constants, c and Variables, x

 Function applications 𝑡 𝑢

 Abstractions 𝜆𝑥 . 𝑡

 Lots of syntactic sugar

 i.e. The language of terms is a simply type 𝜆 − calculus, noting Isabelle performs 𝛽-reduction

(𝜆𝑥. 𝑡 𝑢 to 𝑡[𝑢/𝑥]) automatically.

 Terms must be well-typed (𝑡 ∷ 𝜏)

 Isabelle automatically computers the type of each variable in a term (type inference), except for

overloaded functions where type annotations can be useful.

21

22

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 12

Course Notes: Modular Proofs in
Isabelle/HOL

ISABELLE’S META LOGIC

 Implication: ⟹

 For separating premises and conclusions of theorems

 Equality ≡

 For definitions

 Universal Quantifier ٿ

 For binding local variables

Do not use inside HOL formula!

Logically the same meaning, but differences is usability/automation

NB: The Metalogic, has itself been formalised! https://www.isa-afp.org/entries/Metalogic_ProofChecker.html

EDITORS

23

24

https://www.isa-afp.org/entries/Metalogic_ProofChecker.html

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 13

Course Notes: Modular Proofs in
Isabelle/HOL

ISABELLE JEDIT

Includes the most

customised support

for Isabelle

developments

ISABELLE VSCODE

New VSCode based editor

▪ Must use instance in

the Isabelle download

▪ Start via:

 “isabelle vscode”

▪ Nice html preview

▪ Many less Isabelle

features than jedit

▪ Don’t use the old

VSCode extension

25

26

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 14

Course Notes: Modular Proofs in
Isabelle/HOL

INTRODUCTION BY EXAMPLE
1. BOOLEAN LOGIC AND FUNCTIONS

FUNCTIONS/DATATYPES

27

28

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 15

Course Notes: Modular Proofs in
Isabelle/HOL

DATATYPES

 Functional style datatypes

 Generates lots of useful facts/properties:

 distinctness and injectivity (applied automatically).

 Induction (needs to be applied)

FUNCTIONS & DEFINITIONS

 All Functions must be total!

 Fun – termination proved automatically (most things we’ll deal with),

 Function – user supplied termination proof.

 Definition: non-recursive definitions

 Recursive functions have more built in facts that are useful in proofs than a definition.

29

30

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 16

Course Notes: Modular Proofs in
Isabelle/HOL

TACTICS

Auto

 auto applies simp rules + all obvious

logical steps, e.g.:

 Splitting conjunctive goals and disjunctive

assumptions

 Performing obvious quantifier removal

 It operates on all subgoals

 Designated intro and elimination rules

included in this

Simp

 Simp performs rewriting (along with simple

arithmetic simplification)

 It only operates on the first subgoal

 Some facts are included in the simplifier

 Other facts are often useful, e.g. for

arithmetic, consider trying the following:

 algebra_simps

 field_simps

 divide_simps

AUTO VS SIMP

31

32

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 17

Course Notes: Modular Proofs in
Isabelle/HOL

MORE REWRITING

 Simp rules work left to right, i.e. at each step transform the LHS into the RHS

 Isabelle enables you to add rules to the simplifier by declaring them as such

 Rewrite rules can be conditional (and are applied if the conditions can themselves be recursively

proved via simplification)

 But! We need to be careful to avoid loops.

 The following pair of “simp” rules would cause issues:

𝑓 𝑥 = ℎ 𝑔 𝑥 , 𝑔 𝑥 = 𝑓(𝑥 + 2)

 Permutative rewrite rules (e.g. 𝑥 + 𝑦 = 𝑦 + 𝑥) are applied but only if they make the term “lexicographically

smaller”

VARIATIONS ON SIMP/AUTO

 Add a fact (once-off) to be used for simplification: simp add: app_assoc

 Omit a fact (once-off) from simplification: simp del: rev_rev

 Don’t simplify the assumptions: simp (no_asm_simp)

 Ignore the assumptions: simp (no_asm)

 Simplify all the subgoals: simp_all

 Add rewriting rules/introduction rules etc to auto: auto simp add: … intro: …

 You can combine many of these!

33

34

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 18

Course Notes: Modular Proofs in
Isabelle/HOL

SIMP TRACE

 Insert: using [[simp_trace]] (inline proof) or declare [[simp_trace]] (theory wide)

MORE TACTICS

 Basic tactics such as rule, erule, assumption, intro, elim, used in conjunction with a known

fact

 These can often be combined with auto/simp (like other variations of simp)

 We also have other automated tactics:

 force, fastforce

 blast: uses intro + elimination rules with powerful search heuristics (not simplification/arithmetic reasoning)
and won’t terminate if it doesn’t work

 Arithmetic tactics: arith, linarith

 Use of tactics like “metis” and “smt” often indicate use of sledgehammer

 Other good tactics for starting a proof (less powerful, but safer): safe, clarify, standard

 And many more tactics: cases, split …

 Tactics can be combined e.g. by (induction) (blast | fastforce)+ applies induction then

repeatedly shows the subgoals using either blast or fastforce

35

36

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 19

Course Notes: Modular Proofs in
Isabelle/HOL

INDUCTION

 Inductive tactics are well-developed with many options for application.

 The induction tactic tries to figure out what to do automatically:

 Sometimes it can’t, and we need to be more specific

Specify n should be

universally quantified in

induction

Specify induction rule to

use

(unnecessary in this case)

USEFUL FEATURES

37

38

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 20

Course Notes: Modular Proofs in
Isabelle/HOL

THE ISABELLE AFP

 A significant archive of (refereed) formalised mathematics and computer science concepts.

 More of an “archive” than a constantly modified “library”

 https://www.isa-afp.org/

 It can be easily imported into a local instance of Isabelle by adding it as a component, see here:

https://www.isa-afp.org/help/

 Over 4.5 million lines of code across 894 entries – and still growing!

SLEDGEHAMMER

Problem + 1000s of

facts/thms

AUTOMATED

THEOREM PROVERS

E

SPASS

Vampire

Z3

Cvc

…

Generated

Proof(s)

39

40

https://www.isa-afp.org/
https://www.isa-afp.org/help/

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 21

Course Notes: Modular Proofs in
Isabelle/HOL

SLEDGEHAMMER

 Simplify the goal and break down into

pieces

 Sledgehammer doesn’t prove the

goal, but returns a “proof” which is a

call to metis, smt, blast, auto etc…

 Translations are not sound, hence

sledgehammer provided proof may

not work when inserted.

 Generated proofs can be ugly/messy

– there are usually cleaner ways!

 For more history: https://lawrencecpaulson.github.io/2022/04/13/Sledgehammer.html

 For a more technical overview: https://www.cl.cam.ac.uk/~lp15/papers/Automation/paar.pdf (or

many of Jasmin Blanchette’s papers for more recent work).

Nitpick Quickcheck

COUNTER EXAMPLE

41

42

https://lawrencecpaulson.github.io/2022/04/13/Sledgehammer.html
https://www.cl.cam.ac.uk/~lp15/papers/Automation/paar.pdf

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 22

Course Notes: Modular Proofs in
Isabelle/HOL

SEARCH: QUERY

SEARCH: FINDFACTS

https://search.isabelle.in.tum.de/

OR

Local Database with Isabelle2025

isabelle find_facts_server -p 8080 -o find_facts_database_name=isabelle

43

44

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 23

Course Notes: Modular Proofs in
Isabelle/HOL

SEARCH: SERAPIS

https://behemoth.cl.cam.ac.uk/search/

Note: Last AFP Index was in 2021

OTHER COOL FEATURES

 Code Generation

 Document Preparation

 Lifting and Transfer

 Eisbach => Proof Method language

 Polymorphism (Type classes) and a powerful module system (Locales)

TOMORROW

45

46

https://behemoth.cl.cam.ac.uk/search/

07/04/2025

MGS 2025 – University of Sheffield
Chelsea Edmonds 24

Course Notes: Modular Proofs in
Isabelle/HOL

NEXT TIME…

 Example Class:

 Get started with Isabelle: Logic and function proofs

 Test out sledgehammer for yourself

 Try out different tactics

 Gain familiarity with Isabelle tools

 Next Lecture

 Starting on modularity!

 Finish off your “tour” overview of Isabelle with the Isar proof language and more advanced types

 Introducing type classes and locales

 To come… more advanced case studies in mathematics and program verification!

47

	Default Section
	Slide 1: Lecture 1: Introducing Proof Assistants & Isabelle/HOL Modular Proofs in Isabelle HOL
	Slide 2: Course OVERVIEW
	Slide 3: Pre-Requisite Knowledge
	Slide 4: A Disclaimer ….
	Slide 5: Course Resources
	Slide 6: Lecture 1 Overview

	Intro to Proof Assistants
	Slide 7: Introduction To Proof Assistants
	Slide 8: Proof Assistants
	Slide 9: Why Formalise?
	Slide 10: Why Formalise?
	Slide 11: Why Formalise?
	Slide 12: Why Formalise?
	Slide 13: Why Formalise?
	Slide 14: Proof Assistant Components
	Slide 15: Some History
	Slide 16: The Isabelle Proof Assistant
	Slide 17: The Isabelle Proof Assistant
	Slide 18: Isabelle Overview
	Slide 19: Isabelles Family of LOGICS
	Slide 20: Isabelle/HOL Foundations
	Slide 21: Basic Types / Terms / Functions
	Slide 22: Terms
	Slide 23: Isabelle’s Meta LOGIC
	Slide 24: Editors
	Slide 25: Isabelle Jedit
	Slide 26: Isabelle VSCODE
	Slide 27: Introduction BY Example
	Slide 28: Functions/Datatypes
	Slide 29: Datatypes
	Slide 30: Functions & Definitions
	Slide 31: Tactics
	Slide 32: AUTO VS SIMP
	Slide 33: More Rewriting
	Slide 34: Variations on Simp/Auto
	Slide 35: Simp Trace
	Slide 36: More TACTICS
	Slide 37: Induction
	Slide 38: Useful Features
	Slide 39: The Isabelle AFP
	Slide 40: Sledgehammer
	Slide 41: Sledgehammer
	Slide 42: Counter Example
	Slide 43: Search: Query
	Slide 44: Search: FindFACTS
	Slide 45: Search: SERAPIS
	Slide 46: Other Cool Features
	Slide 47: Next Time…

