
LECTURE 1: INTRODUCING PROOF ASSISTANTS & ISABELLE/HOL
MODULAR PROOFS IN ISABELLE HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Midlands Graduate School 2025

University of Sheffield

COURSE OVERVIEW

Lectures:

 Introduction to Proof Assistants

 Formalising the basics in Isabelle/HOL

 Introduction to Isar, more types, Locales and Type-classes

 Case studies:

 Formalising Mathematics: Combinatorics & advanced locale reasoning
patterns

 Program Verification: Formalising semantics, program properties, and
introducing modularity/abstraction.

Example Classes:

 Isabelle exercises based on the previous lecture

 Will be drawing from the existing Isabelle tutorials/Nipkow’s
Concrete Semantic Book, as well as custom exercises (e.g. for
locales).

Acknowledgement: Slides partially inspired by slides/notes by Larry
Paulson, Tobias Nipkow, Gerwin Klein, Clemens Ballarin, Georg Struth,
Andrei Popescu (and many more who’ve come before me!)

A practical course on

effective use of the

Isabelle/HOL proof assistant

in mathematics and

programming languages

PRE-REQUISITE

KNOWLEDGE

 No prior proof assistance is assumed:

 If you’ve used Isabelle before, perhaps this will offer a new

perspectivecloser look at certain features

 If you’ve used other proof assistants before, there’ll be plenty of

Isabelle specific concepts as well as more familiar ones.

 We’ll discuss topics that are both Isabelle specific and more general

in the proof assistant landscape.

 What is assumed:

 Some familiarity with functional programming

 Basic logic, discrete maths, some semantics (for the last lecture).

This course IS…

…unashamedly a course on the practical use of
proof assistants and in particular, Isabelle/HOL

Main course goals:

- Be able to use Isabelle to start your own
project/keep learning yourself.

- Understand the importance of modularity in
formal proof and use important
tools/advanced proof techniques in
Isabelle/HOL to manage such modularity

- Understand the role proof assistants can play
in several areas of foundations research

This course IS NOT:

- A type theory course

- A course on the details of all proof

assistants (or for that matter, even all the

details of Isabelle/HOL!).

- An introduction to a particular foundational

concept which only uses Isabelle for

exercises

A DISCLAIMER ….

COURSE

RESOURCES

 Documentation

 See the course website for slides, notes, and exercises:

 https://cledmonds.github.io/mgs2025/

 Will be updated throughout this week!

 Other useful resources:

 The official documentation (particularly prog-prove & locales

tutorials): Comes with Isabelle distribution

 Tobias Nipkow and Gerwin Klein’s Concrete Semantics Book:

http://concrete-semantics.org/

 Machine Logic Blog: Interesting exploration of Isabelle and history by

Larry Paulson - https://lawrencecpaulson.github.io/

https://cledmonds.github.io/mgs2025/
http://concrete-semantics.org/
https://lawrencecpaulson.github.io/

LECTURE 1

OVERVIEW

 Introduction to Proof Assistants

 History, major developments, motivation

 Introduction to Isabelle/HOL

 A fast-paced “tour” through key basic concepts

 The editors

 Some logical proofs

 Functions, datatypes, tactics.

 More examples!

 Isabelle Infrastructure: AFP, automation, search, etc

 Summary of other advanced features

INTRODUCTION TO PROOF ASSISTANTS

PROOF ASSISTANTS

 Interactive proof assistants allow us to prove theorems in a logical formalism:

 With precise definitions of concepts

 A formal deductive system

 And (hopefully) automated tools

 We can create hierarchies of definitions and proofs

 Specifications of components and properties

 Proofs that designs meet their requirements.

 Interactive = “guided” by a human user to produce a formalisation or mechanisation.

WHY FORMALISE?

A very simple example ….

WHY FORMALISE?

A very simple example ….

WHY FORMALISE?

*Footnotes on page 118 of Jech’s The Axiom of Choice (1973)

WHY FORMALISE?

To validate complex proofs

To reveal hidden

assumptions & proof

steps

To create central libraries of

verified mathematical/CS

knowledge

To benefit from advances

in automation and

technology

PROOF ASSISTANT COMPONENTS

Core Logical Formalism

Notational
Support

User Interface

Basic Proof
Language

Proof Libraries

Theory
Management

Automation
Tools

SOME HISTORY

 Automath (de Bruijn, 1968): The first! Novel type theory. Formalised the construction of the reals.

 Mizar (Trybulec, 1973): Set theory with “soft typing”. Structured formal language

 Rocq (Coq) (Coquand and Huet et al, 1984): Dependent type theory.

 HOL [Light] (Gorden, 1988, Harrison, 1992): Simple type theory/Higher-order logic. First to verify

real analysis.

 Isabelle[HOL] (Paulson, 1986): Isabelle is a generic proof assistant. Its main instance is simple

type theory/higher order logic.

 Agda (Coquand, 1999, Ulf, 2007): A dependently typed functional programming language, that is

also a proof assistant. Based on Intuitionistic type theory.

 Lean (de Moura et al, 2015): Dependent type theory. Has a strong community for formalised

maths.

 And many more …

THE ISABELLE PROOF ASSISTANT

THE ISABELLE PROOF ASSISTANT

ISABELLE

OVERVIEW

 Simple type theory/HOL

 Sledgehammer – automated proof

search.

 Counter-example generators

 Search tools: Query Search, Find Facts,

SErAPIS

 The Isar structured proof language

 Jedit/VS Codium IDE

 Extensive existing libraries in Maths &

Computer Science (AFP)

 Additional features: Code generation,

documentation generation …

ISABELLES FAMILY OF LOGICS

Isabelle Pure

HOL

HOLCF

CTT LKIFOL

FOL

ZF LCF

Modal

Logics

 Isabelle is a generic theorem prover

 Overtime, several different logics have been

developed – Isabelle/HOL is by far the most

widely used.

ISABELLE/HOL FOUNDATIONS

 Isabelle/HOL is based on a Higher-Order logic (i.e. simple type theory)

 First order logic extended with functions and sets.

 Extended to also incorporate rank-1 polymorphism (we’ll get to type classes later!).

 ML-style functional programming.

 Often introduced as HOL

 Variation of Gordon’s HOL (also led to the logic behind HOL4/HOL Light)

BASIC TYPES / TERMS / FUNCTIONS

 Base types

 Type variables

 Function types

 Pairs

 Lists

 Sets

 User defined types

-Postfix types have precedence over function types (i.e. ′𝑎 ⇒ ′𝑏 𝑙𝑖𝑠𝑡 means ′𝑎 ⇒ (′𝑏 𝑙𝑖𝑠𝑡))

TERMS

Terms (follow the typed 𝜆 calculus)

 Constants, c and Variables, x

 Function applications 𝑡 𝑢

 Abstractions 𝜆𝑥 . 𝑡

 Lots of syntactic sugar

 i.e. The language of terms is a simply type 𝜆 − calculus, noting Isabelle performs 𝛽-reduction

(𝜆𝑥. 𝑡 𝑢 to 𝑡[𝑢/𝑥]) automatically.

 Terms must be well-typed (𝑡 ∷ 𝜏)

 Isabelle automatically computers the type of each variable in a term (type inference), except for

overloaded functions where type annotations can be useful.

ISABELLE’S META LOGIC

 Implication: ⟹

 For separating premises and conclusions of theorems

 Equality ≡

 For definitions

 Universal Quantifier ٿ

 For binding local variables

Do not use inside HOL formula!

Logically the same meaning, but differences is usability/automation

NB: The Metalogic, has itself been formalised! https://www.isa-afp.org/entries/Metalogic_ProofChecker.html

https://www.isa-afp.org/entries/Metalogic_ProofChecker.html

EDITORS

ISABELLE JEDIT

Includes the most

customised support

for Isabelle

developments

ISABELLE VSCODE

New VSCode based editor

▪ Must use instance in

the Isabelle download

▪ Start via:

 “isabelle vscode”

▪ Nice html preview

▪ Many less Isabelle

features than jedit

▪ Don’t use the old

VSCode extension

INTRODUCTION BY EXAMPLE
1. BOOLEAN LOGIC AND FUNCTIONS

FUNCTIONS/DATATYPES

DATATYPES

 Functional style datatypes

 Generates lots of useful facts/properties:

 distinctness and injectivity (applied automatically).

 Induction (needs to be applied)

FUNCTIONS & DEFINITIONS

 All Functions must be total!

 Fun – termination proved automatically (most things we’ll deal with),

 Function – user supplied termination proof.

 Definition: non-recursive definitions

 Recursive functions have more built in facts that are useful in proofs than a definition.

TACTICS

Auto

 auto applies simp rules + all obvious

logical steps, e.g.:

 Splitting conjunctive goals and disjunctive

assumptions

 Performing obvious quantifier removal

 It operates on all subgoals

 Designated intro and elimination rules

included in this

Simp

 Simp performs rewriting (along with simple

arithmetic simplification)

 It only operates on the first subgoal

 Some facts are included in the simplifier

 Other facts are often useful, e.g. for

arithmetic, consider trying the following:

 algebra_simps

 field_simps

 divide_simps

AUTO VS SIMP

MORE REWRITING

 Simp rules work left to right, i.e. at each step transform the LHS into the RHS

 Isabelle enables you to add rules to the simplifier by declaring them as such

 Rewrite rules can be conditional (and are applied if the conditions can themselves be recursively

proved via simplification)

 But! We need to be careful to avoid loops.

 The following pair of “simp” rules would cause issues:

𝑓 𝑥 = ℎ 𝑔 𝑥 , 𝑔 𝑥 = 𝑓(𝑥 + 2)

 Permutative rewrite rules (e.g. 𝑥 + 𝑦 = 𝑦 + 𝑥) are applied but only if they make the term “lexicographically

smaller”

VARIATIONS ON SIMP/AUTO

 Add a fact (once-off) to be used for simplification: simp add: app_assoc

 Omit a fact (once-off) from simplification: simp del: rev_rev

 Don’t simplify the assumptions: simp (no_asm_simp)

 Ignore the assumptions: simp (no_asm)

 Simplify all the subgoals: simp_all

 Add rewriting rules/introduction rules etc to auto: auto simp add: … intro: …

 You can combine many of these!

SIMP TRACE

 Insert: using [[simp_trace]] (inline proof) or declare [[simp_trace]] (theory wide)

MORE TACTICS

 Basic tactics such as rule, erule, assumption, intro, elim, used in conjunction with a known

fact

 These can often be combined with auto/simp (like other variations of simp)

 We also have other automated tactics:

 force, fastforce

 blast: uses intro + elimination rules with powerful search heuristics (not simplification/arithmetic reasoning)
and won’t terminate if it doesn’t work

 Arithmetic tactics: arith, linarith

 Use of tactics like “metis” and “smt” often indicate use of sledgehammer

 Other good tactics for starting a proof (less powerful, but safer): safe, clarify, standard

 And many more tactics: cases, split …

 Tactics can be combined e.g. by (induction) (blast | fastforce)+ applies induction then

repeatedly shows the subgoals using either blast or fastforce

INDUCTION

 Inductive tactics are well-developed with many options for application.

 The induction tactic tries to figure out what to do automatically:

 Sometimes it can’t, and we need to be more specific

Specify n should be

universally quantified in

induction

Specify induction rule to

use

(unnecessary in this case)

USEFUL FEATURES

THE ISABELLE AFP

 A significant archive of (refereed) formalised mathematics and computer science concepts.

 More of an “archive” than a constantly modified “library”

 https://www.isa-afp.org/

 It can be easily imported into a local instance of Isabelle by adding it as a component, see here:

https://www.isa-afp.org/help/

 Over 4.5 million lines of code across 894 entries – and still growing!

https://www.isa-afp.org/
https://www.isa-afp.org/help/

SLEDGEHAMMER

Problem + 1000s of

facts/thms

AUTOMATED

THEOREM PROVERS

E

SPASS

Vampire

Z3

Cvc

…

Generated

Proof(s)

SLEDGEHAMMER

 Simplify the goal and break down into

pieces

 Sledgehammer doesn’t prove the

goal, but returns a “proof” which is a

call to metis, smt, blast, auto etc…

 Translations are not sound, hence

sledgehammer provided proof may

not work when inserted.

 Generated proofs can be ugly/messy

– there are usually cleaner ways!

 For more history: https://lawrencecpaulson.github.io/2022/04/13/Sledgehammer.html

 For a more technical overview: https://www.cl.cam.ac.uk/~lp15/papers/Automation/paar.pdf (or

many of Jasmin Blanchette’s papers for more recent work).

https://lawrencecpaulson.github.io/2022/04/13/Sledgehammer.html
https://www.cl.cam.ac.uk/~lp15/papers/Automation/paar.pdf

Nitpick Quickcheck

COUNTER EXAMPLE

SEARCH: QUERY

SEARCH: FINDFACTS

https://search.isabelle.in.tum.de/

OR

Local Database with Isabelle2025

isabelle find_facts_server -p 8080 -o find_facts_database_name=isabelle

SEARCH: SERAPIS

https://behemoth.cl.cam.ac.uk/search/

Note: Last AFP Index was in 2021

https://behemoth.cl.cam.ac.uk/search/

OTHER COOL FEATURES

 Code Generation

 Document Preparation

 Lifting and Transfer

 Eisbach => Proof Method language

 Polymorphism (Type classes) and a powerful module system (Locales)

TOMORROW

NEXT TIME…

 Example Class:

 Get started with Isabelle: Logic and function proofs

 Test out sledgehammer for yourself

 Try out different tactics

 Gain familiarity with Isabelle tools

 Next Lecture

 Starting on modularity!

 Finish off your “tour” overview of Isabelle with the Isar proof language and more advanced types

 Introducing type classes and locales

 To come… more advanced case studies in mathematics and program verification!

	Default Section
	Slide 1: Lecture 1: Introducing Proof Assistants & Isabelle/HOL Modular Proofs in Isabelle HOL
	Slide 2: Course OVERVIEW
	Slide 3: Pre-Requisite Knowledge
	Slide 4: A Disclaimer ….
	Slide 5: Course Resources
	Slide 6: Lecture 1 Overview

	Intro to Proof Assistants
	Slide 7: Introduction To Proof Assistants
	Slide 8: Proof Assistants
	Slide 9: Why Formalise?
	Slide 10: Why Formalise?
	Slide 11: Why Formalise?
	Slide 12: Why Formalise?
	Slide 13: Why Formalise?
	Slide 14: Proof Assistant Components
	Slide 15: Some History
	Slide 16: The Isabelle Proof Assistant
	Slide 17: The Isabelle Proof Assistant
	Slide 18: Isabelle Overview
	Slide 19: Isabelles Family of LOGICS
	Slide 20: Isabelle/HOL Foundations
	Slide 21: Basic Types / Terms / Functions
	Slide 22: Terms
	Slide 23: Isabelle’s Meta LOGIC
	Slide 24: Editors
	Slide 25: Isabelle Jedit
	Slide 26: Isabelle VSCODE
	Slide 27: Introduction BY Example
	Slide 28: Functions/Datatypes
	Slide 29: Datatypes
	Slide 30: Functions & Definitions
	Slide 31: Tactics
	Slide 32: AUTO VS SIMP
	Slide 33: More Rewriting
	Slide 34: Variations on Simp/Auto
	Slide 35: Simp Trace
	Slide 36: More TACTICS
	Slide 37: Induction
	Slide 38: Useful Features
	Slide 39: The Isabelle AFP
	Slide 40: Sledgehammer
	Slide 41: Sledgehammer
	Slide 42: Counter Example
	Slide 43: Search: Query
	Slide 44: Search: FindFACTS
	Slide 45: Search: SERAPIS
	Slide 46: Other Cool Features
	Slide 47: Next Time…

