University of

Yy Sheffield

LECTURE 1: INTRODUCING PROOF ASSISTANTS & ISABELLE/HOL
MODULAR PROOFS IN ISABELLE HOL

CHELSEA EDMONDS | c.l.edmonds@sheffield.ac.uk

Midlands Graduate School 2025

University of Sheffield

COURSE OVERVIEW

A practical course on
effective use of the
Isabelle/HOL proof assistant
iIn mathematics and
programming languages

Lectures:

= Introduction to Proof Assistants

= Formalising the basics in Isabelle/HOL

= |ntroduction to Isar, more types, Locales and Type-classes

= Case studies:

= Formalising Mathematics: Combinatorics & advanced locale reasoning
patterns

= Program Verification: Formalising semantics, program properties, and
introducing modularity/abstraction.

Example Classes:
= |sabelle exercises based on the previous lecture

= Will be drawing from the existing Isabelle tutorials/Nipkow’s
Concrete Semantic Book, as well as custom exercises (e.g. for
locales).

Acknowledgement: Slides partially inspired by slides/notes by Larry
Paulson, Tobias Nipkow, Gerwin Klein, Clemens Ballarin, Georg Struth,
Andrei Popescu (and many more who’'ve come before me!)

PRE-REQUISITE = No prior proof assistance is assumed:

KNOWLEDGE = |f you've used Isabelle before, perhaps this will offer a new
perspectivecloser look at certain features

= |f you've used other proof assistants before, there’ll be plenty of
Isabelle specific concepts as well as more familiar ones.

= We'll discuss topics that are both Isabelle specific and more general
in the proof assistant landscape.

= What is assumed:

= Some familiarity with functional programming

= Basic logic, discrete maths, some semantics (for the last lecture).

A DISCLAIMER

This course IS... This course IS NOT:

...unashamedly a course on the practical use of - Atype theory course
proof assistants and in particular, Isabelle/HOL
A course on the details of all proof

assistants (or for that matter, even all the

Main course goals: details of Isabelle/HOL!).

Be able to use Isabelle to start your own
project/keep learning yourself. - An introduction to a particular foundational

Understand the importance of modularity in concept which only uses Isabelle for
formal proof and use important exercises

tools/advanced proof techniques in

Isabelle/HOL to manage such modularity

Understand the role proof assistants can play
in several areas of foundations research

= Documentation

COURSE
RESOURCES

= See the course website for slides, notes, and exercises:

m https://cledmonds.github.io/mgs2025/

= Will be updated throughout this week!

= QOther useful resources:

= The official documentation (particularly prog-prove & locales
tutorials): Comes with Isabelle distribution

= Tobias Nipkow and Gerwin Klein’s Concrete Semantics Book:
http://concrete-semantics.org/

= Machine Logic Blog: Interesting exploration of Isabelle and history by
Larry Paulson - https://lawrencecpaulson.github.io/

https://cledmonds.github.io/mgs2025/
http://concrete-semantics.org/
https://lawrencecpaulson.github.io/

= |ntroduction to Proof Assistants

LECTURE 1
OVERVIEW

= History, major developments, motivation

= |ntroduction to Isabelle/HOL

= A fast-paced “tour” through key basic concepts
= The editors
= Some logical proofs
= Functions, datatypes, tactics.
= More examples!
= |sabelle Infrastructure: AFP, automation, search, etc

= Summary of other advanced features

INTRODUCTION TO PROOF ASSISTANTS

PROOF ASSISTANTS

" |nteractive proof assistants allow us to prove theorems in a logical formalism:
= With precise definitions of concepts
= A formal deductive system
= And (hopefully) automated tools
= We can create hierarchies of definitions and proofs
m Specifications of components and properties

= Proofs that designs meet their requirements.

" |nteractive = “guided” by a human user to produce a formalisation or mechanisation.

WHY
FORMALISE?

WHY FORMALISE?

A very simple example

(P—Q),(Q >R)FR

N o R W

(P— Q) hyp

(@ +R) hyp

P hyp

Q (—E) 1,3
R (—E), 2, 4
P— R (—1) 3-5
R (—E) 6,3

Vx3dyP(x, y) b IxVyP(x, y)

a k=

Vx3yP(x, y)
JyP(a,y)
P(a, b)
VxP(x, b)
JyVxP(x, y)

hyp

(VE) 1
(3E) 2
(vl 3
(31) 4

Are the proofs below correct? Are they valid theorems to begin with?

(PANQ)— REP—(Q— R)

N o oA whH

(PAQ)— R hyp

P hyp

Q hyp
PAQ (AE)) 2, 3
R (—E) 1,4
QR—R (—1) 3-5
P—-Q—R (—I)26

WHY FORMALISE?

A very simple example

(P—Q),(Q—R)FR Vx3yP(x,y) b IxVyP(x, y)

1. Vx3yP(x,y) hyp
;' (P—= 2) :yp 2. 3JyP(a,y) (VE) 1

- (@=R) hyp 3. P(a,b) (3E) 2

> Z ?yp) 4. YxP(x,b) (vI)3
4. —E), 1,3

5. JyVxP(x, 31) 4
5 e (E). 2, 4 yVxP(x,y) (31)
6. PR (—1) 3-5 NOT A THEOREM! (3E) at 3
7. R (—E) 6,3

NOT A THEOREM! (—E) at 7

(PAQ)—-RFP—=(Q—R)

1. (PAQ)— R hyp

2. P hyp

3. Q hyp

4. PAQ (ANEj) 2,3
5. R (—E) 1, 4
6. Q—R (—1) 3-5
7. P—-Q—R (—=I)26

PROOF ERROR: (Al) at 4

WHY FORMALISE?

ANNALS OF MATHEMATICSANNALS OF MATHEMATICS

Princeton University & Institute for Advanced Study Princeton University & Institute for Advanced Study

Non-quasi-projective moduli spaces

QuaS|-prOJect|V|ty of moduli apaces of polanzed udiistios Pages 1077-1096 from Volume 164 (2006), Issue 3 by Janos Kollar

Pages 597-639 from Volume 159 (2004), Issue 2 by Georg Schumacher, Hajime Tsuji

Abstract
Abstract))) :

We show that every smooth toric variety (and many other algebraic spaces as well) can be realized
By means of analytic methods the quasi-projectivity of the moduli space of algebraically polarized as a moduli space for smooth, projective, polarized varieties. Some of these are not quasi-projective.
varieties with a not necessarily reduced complex structure is proven including the case of This contradicts a recent paper (Quasi-projectivity of moduli spaces of polarized varieties, Ann. of
nonuniruled polarized varieties. Math.159 (2004) 597-639.).

! The result of Problem 11 contradicts the results announced by Levy [1963b]. Un-
fortunately, the construction presented there cannot be completed.

2 The transfer to ZF was also claimed by Marek [1966] but the outlined method appears
to be unsatisfactory and has not been published.

3 A contradicting result was announced and later withdrawn by Truss [1970].

4 The example in Problem 22 is a counterexample to another condition of Mostowski,
who conjectured its sufficiency and singled out this example as a test case.

5 The independence result contradicts the claim of Felgner [1969] that the Cofinality
Principle implies the Axiom of Choice. An error has been found by Morris (see Felgner’s
corrections to [1969]).

*Footnotes on page 118 of Jech’s The Axiom of Choice (1973)

WHY FORMALISE?

v/

S

To validate complex proofs

To create central libraries of
verified mathematical/CS
knowledge

Q

oﬁ

To reveal hidden
assumptions & proof
steps

To benefit from advances
in automation and
technology

PROOF ASSISTANT COMPONENTS

: : Automation
User Interface Proof Libraries

Notational Basic Proof Theory
Support Language Management
Core Logical Formalism

SOME HISTORY

= Automath (de Bruijn, 1968): The first! Novel type theory. Formalised the construction of the reals.
= Mizar (Trybulec, 1973): Set theory with “soft typing”. Structured formal language
= Rocq (Coq) (Coquand and Huet et al, 1984): Dependent type theory.

= HOL [Light] (Gorden, 1988, Harrison, 1992): Simple type theory/Higher-order logic. First to verify
real analysis.

= |sabelle[HOL] (Paulson, 1986): Isabelle is a generic proof assistant. Its main instance is simple
type theory/higher order logic.

= Agda (Coquand, 1999, Ulf, 2007): A dependently typed functional programming language, that is
also a proof assistant. Based on Intuitionistic type theory.

= |ean (de Moura et al, 2015): Dependent type theory. Has a strong community for formalised
maths.

= And many more ...

THE ISABELLE PROOF ASSISTANT

THE ISABELLE PROOF ASSISTANT

B UNIVERSITY OF LTI
& B CAMBRIDGE TECHNISCHE
UNIVERSITAT

Computer Laboratory MUNCHEN

Isabelle

Isabelle is a generic proof assistant. It allows mathematical formulas to be expressed in a formal language and provides tools for proving
those formulas in a logical calculus. Isabelle was originally developed at the University of Cambridge and Technische Universitdt Minchen,
but now includes numerous contributions from institutions and individuals worldwide. See the [sabelle overview for a brief introduction.

o

—~
ﬁfl. / Windows '.

Download for Linux (Intel) - Download for Linux (ARM) - Download for Windows - Download for macOS

Hardware requirements:

Small experiments: 4 GB memory, 2 CPU cores
Medium applications: 8 GB memory, 4 CPU cores
Large projects: 16 GB memory, 8 CPU cores
Extra-large projects: 64 GB memory, 16 CPU cores

ISABELLE theorem assumes "prime p" shows "sqrt p ¢ Q"

proof

OVERVI Ew from <prime p> have p: "1 < p" by (simp add: prime_deft)
assume "sqrt p € Q"

then obtain m n :: nat where

n: "n # 0" and sqrt_rat: “{sqrt p} =m / n"
Simple type theory/HOL and "coprime n r" by (rule Rats abs nat div natE)
have eq: "m? = p * n?"
Sledgehammer - automated proof proof -
search from n and sqrt_rat have "m = }sqrt p} * n" by simp
. then show "m2 = p * n2"
Counter—example generators by (mectis abs of nat of nat ecq iff of nat mult power2 eq squarc rcal sqrt abs2 rca
qed
Search tools: Query Search, Find Facts, have [piEveIEAIDIGYOIN]
SErAPIS g
f from ec have "p dvd m* .. sledgehammer proofs
with <prime p- show "p dvd m" by (rule prime_dvd power nat)
The Isar structured proof language then obtain k where BRERIHE S
. . with ec have "p * n? = p2 * k2" by (auto simp add: pcwerZ2 eg _square ac simps)
Jedit/VS Codium IDE with FEIREEE shov LHl R
. by (metis dvd_triv_left nat_mult_dvd_cancell power2_ec_square prime_dvd_power_nat
Extensive existing libraries in Maths & dod
Computer Science (AFP then have "p dvd gcd m n" by simp
g
with <coprime m n> have "p = 1" by simp
Additional features: Code generation, with p show False by simp

documentation generation ... qed

ISABELLES FAMILY OF LOGICS

ZF LCF
~_" Modal
FOL HOLCF Logics
= [sabelle is a generic theorem prover | ‘ ‘
= QOvertime, several different logics have been IFOL HOL CTT LK
developed - Isabelle/HOL is by far the most
widely used. /

Isabelle Pure

ISABELLE/HOL FOUNDATIONS

= |sabelle/HOL is based on a Higher-Order logic (i.e. simple type theory)

= First order logic extended with functions and sets.
= Extended to also incorporate rank-1 polymorphism (we’ll get to type classes later!).

= MLstyle functional programming.

= Often introduced as HOL
= Variation of Gordon’s HOL (also led to the logic behind HOL4/HOL Light)

BASIC TYPES / TERMS / FUNCTIONS

T = (1)

bool | mat | int | ... = Basebpes
‘a ‘ 'b ‘ = Type variables
T = T = Function types
TXT = Pairs

T list = Lists

T set = Sets

= User defined types

-Postfix types have precedence over function types (i.e. ‘a = 'b list means ‘a = ('b list))

TERMS
I = (t) Terms (follow the typed A calculus)
Qa = Constants, ¢ and Variables, x
t 1 = Function applications t u
AT 1 = Abstractions Ax .t
= |ots of syntactic sugar

= j.e. The language of terms is a simply type A — calculus, noting Isabelle performs -reduction
((Ax.t) u to t[u/x]) automatically.

= Terms must be well-typed (t :: 1)

® |sabelle automatically computers the type of each variable in a term (type inference), except for
overloaded functions where type annotations can be useful.

ISABELLE’S META LOGIC

= Implication: =

= For separating premises and conclusions of theorems
= Equality =

= For definitions
= Universal Quantifier A

= For binding local variables

Do not use inside HOL formula!
Logically the same meaning, but differences is usability/automation

NB: The Metalogic, has itself been formalised! https://www.isa-afp.org/entries/Metalogic ProofChecker.html

https://www.isa-afp.org/entries/Metalogic_ProofChecker.html

EDITORS

ISABELLE JEDIT

4 File Edit Search Markers Folding View Utilities

DE®dE & 9¢ 0B B &

Examples
src/HOL/Examples/Seq.thy
src/HOL/Examples/Drinker.thy
src/HOL/Examples/Ackermann.thy
src/HOL/Examples/ML.thy
src/Tools/SML/Examples.thy
src/Pure/ROOT.ML
$ML_SOURCES/ROOT.ML
Release Notes
ANNOUNCE
README
NEWS
COPYRIGHT
CONTRIBUTORS
contrib/README
src/Tools/|EdityREADME
Isabelle Tutorials
prog-prove: Programming and Proving in Isak
locales: Tutorial on Locales
classes: Tutorial on Type Classes
datatypes: Tutorial on (Co)datatype Definitio
functions: Tutorial on Function Definitions
corec: Tutorial on Nonprimitively Corecursive
codegen: Tutorial on Code Generation
nitpick: User's Guide to Nitpick
sledgehammer: User's Guide to Sledgehamr
eisbach: The Eisbach User Manual
sugar: LaTeX Sugar for Isabelle documents
Isabelle Reference Manuals

File Browser Documentation 4 B

main: What's in Main
isar-ref: The Isabelle/lsar Reference Manual
imple fon: The Isabell Implemen

system: The Isabelle System Manual
jedit: IsabellefjEdit
Demo Documents
demo_easychair: Demo for Easychair LaTeX
demo_eptcs: Demo for EPTCS LaTeX style
demo_foiltex: Demo for FoilTeX: slides in La’
demo_lipics: Demo for Dagstuhl LIPics style
demo_lincs: Demo for Springer LaTeX LNCS &
0Old Isabelle Manuals
Original jEdit Documentation

4.1 (46/5864)

Macros Plugins Help

Isabelle2025/HOL - Logic_Examples_Sol.thy

T HEE B & @ €5

I Logic_Examples_Sol thy (%MYDOCS%\Teaching:Logic\)

T

=]

BQ

=[5}

theory Logic_Examples_Sol
imports Main
begin

(* Propositional Logic *)

thm conjI conjE conjunctl conjunct2 (* conjunctl is AEy, conjunt2 is AEr *)
thm disjIl disjI2 disjE

thm impI impE mp (* mp 1is our usual :E *)

thm notI notE (* notE combines our —E with LE *)

thm FalseE Truel

thm iffI
(* Insert correct and wrong examples *)

lemma exl: "P — Q = Q — R = R"
nitpick
oops

lemma ex2: "¥x .dy
nitpick
oops

Pxy—=—3dx.Vy.Pxy"

lemma ex3: "(P A Q) — R = P — (Q — R)"
apply (rule impI)+ (* Working backwards, first apply implication introduction
apply (erule impE)
apply (rule conjI)
by assumption+

twice (+) *)

(* This is an example of how to prove something using the Isar proof language - it works
better for working forward *)

Tamma AvI ierar.

Search:

Proof state /] Auto hovering [/] Auto update Update

B~ Output Query Sledgehammer Symbols

isahelle Fold: isabelle UTF-8-Isabelle & Wrap: none Multi sel: false Rect sel:false Overwrite: false

-

LF

1002

glabal

Purge | [/] Continuous checking £

Prover: ready

default (HOL)

Logic_Examples_Sol

INTIEES/5172MiR

ML : (/497MiR

-

SAINAIT | MPIC | WINANIC | SINSAY INIRACAdAL | 4

10:?8 pm

Includes the most
customised support
for Isabelle
developments

ISABELLE VSCODE

New VSCode based editor

= Logic_Examples_Solthy X

Loie memiles Gell theory Zoote pemsies 5o = Must use instance in

imports Main begin
begin

(* Propocsiticnal Logic *)
thm conjI conjE con; wctl conjunctZ (* conjunctl is AE, enjuntZ is AE, *¥) the ISa belle dOWnIOad
thm disjIl disjI2 disjE

thm impI impE ur usual —E *)

g c c - thm notI notE (* tE ines our —-E with 1lE *
__tl'um conjI conjE conjunctl conjunct2 +hm 1;5;552 — ? o !

n disjI1 disjI2 disjE e = Start via:
1 impI impE mp
notI notE (* Insert correct and wrong examples *)

FalseE Truel e FTRm A “isa bel Ie VSCOde”

oops

lemma ex2: "¥x 3y . Prxy =3I k. ¥Vy.Pxry"
nitpick

= Nice html preview

lemma ex3: "(PA Q) — R =P — (@ — R)"
1 1 {(* Working backwards, first apply implicaticn introduction ... twic

= Many less Isabelle

e something using the Isar proof language - it works

lemma ex3_isar:

e features than jedit

shows " B — (0 — R)"
proof (rule impI)+
assume F Q
then have "P A Q" by (intro conjIl)

1,Ef]'||"\ﬂ ex3: .,(A) N . . - then show R using asams by (elim mp)] Don ’t use the Old
(rule impI)+ o cpesirionst egis proots -
(erule impE) G ;\"zg_f,\i;*j e &) A an

(rule conjI) . 7 VSCOde eXtenS|On

assumption+

emma ex3 isar:

OUTPUT DE OLE ERMINAL ISABELLE: OUTPUT

A7Q — R — 7P — 70 — 7R

INTRODUCTION BY EXAMPLE

1. BOOLEAN LOGIC AND FUNCTIONS

FUNCTIONS/DATATYPES

DATATYPES

®= Functional style datatypes

= Generates lots of useful facts/properties:

m distinctness and injectivity (applied automatically).

®= |nduction (needs to be applied)

datatype 'a mylist = Nill | Consl 'a " 'a mylist"

thm mylist.induct
thm mylist.case

FUNCTIONS & DEFINITIONS

= All Functions must be total!

Fun - termination proved automatically (most things we’ll deal with),
fun app :: "'a mylist = 'a mylist = 'a mylist" where
"app Nill ys = ys" |
"app (Consl x xs) ys = Consl x (app xs ys)"

Function - user supplied termination proof.

Definition: non-recursive definitions

definition prime :: "nat = bool" where
"prime p=(l<p A (VM mdvd p — m=1Vm=np))"

Recursive functions have more built in facts that are useful in proofs than a definition.

TACTICS

AUTO VS SIMP

Auto Simp

= auto applies simp rules + all obvious = Simp performs rewriting (along with simple
logical steps, e.g.: arithmetic simplification)
® Splitting conjunctive goals and disjunctive = |t only operates on the first subgoal

assumptions

, _ . = Some facts are included in the simplifier
= Performing obvious quantifier removal

= QOther facts are often useful, e.g. for
arithmetic, consider trying the following:

= [t operates on all subgoals

= Designated intro and elimination rules

: : : = algebra simps
included in this

= field simps

= divide simps

MORE REWRITING

= Simp rules work left to right, i.e. at each step transform the LHS into the RHS
= |sabelle enables you to add rules to the simplifier by declaring them as such

® Rewrite rules can be conditional (and are applied if the conditions can themselves be recursively
proved via simplification)

= But! We need to be careful to avoid loops.
= The following pair of “simp” rules would cause issues:
fx) =h(g(x)), g(x) = f(x +2)

= Permutative rewrite rules (e.g. x + y = y + x) are applied but only if they make the term “lexicographically
smaller”

VARIATIONS ON SIMP/AUTO

= Add a fact (once-off) to be used for simplification: simp add: app_assoc
= Omit a fact (once-off) from simplification: simp del: rev_rev

= Don’t simplify the assumptions: simp (no_asm_simp)

= |gnore the assumptions: simp (no_asm)

= Simplify all the subgoals: simp all

= Add rewriting rules/introduction rules etc to auto: auto simp add: .. intro: ..

= You can combine many of these!

SIMP TRACE

= |nsert: using [[simp_trace]] (inline proof)or declare [[simp_trace]] (theory wide)

lemma ordered merge[simp]: "ordered (merge xs ys) = (ordered xs A ordered ys)"
apply (induct xs ys rule: merge.induct)
apply simp all
using [[simp trace]]

done

Proof state (/] Auto hovering /| Auto update | Updat.
[0]Adding rewrite rule "triv_forall equality":
(Ax. PROP ?V) = PROP ?V
[1]SIMPLIFIER INVOKED ON THE FOLLOWING TERM:
AX Xs y ys.
x <y =
ordered (merge xs (y # ys))
(-x<y=
ordered (merge (x # xs) ys)
x<y—
(case merge xs (y # ys) of [] = True | v # xs = x < y A ordered (y # xs)) =
((case xs of [] = True | y # xs = x < y A ordered (y # xs)) A
(case ys of [] = True | ya # xs = y < ya A ordered (ya # xs)))) A
(=x<y—
(case merge (x # xs) ys of [] = True | ya # xs = y < ya A ordered (ya # xs)) =
((case xs of [] = True | y # xs = X < y A ordered (y # xs)) A
(case ys of [] = True | ya # xs = y < ya A ordered (ya # xs))))

(ordered xs A (case ys of [] = True | ya # xs = vy

((case xs of [] = True | y # xs = x < y A ordered

- xa < ya —
ordered (merge (xa # xsb) ysb) = (case xsb of [] = True | y # xs = xa < y A ordered

xa < ya = True
[1]Applying congruence rule:
ysbh = ?list' —

Output Query |Sledgehammer | Symbols

MORE TACTICS

= Basic tactics such as rule, erule, assumption, intro, elim, used in conjunction with a known
fact

m These can often be combined with auto/simp (like other variations of simp)

= We also have other automated tactics:

= force, fastforce

= blast: usesintro + elimination rules with powerful search heuristics (not simplification/arithmetic reasoning)
and won’t terminate if it doesn’t work

= Arithmetic tactics: arith, linarith

= Use of tactics like “metis” and “smt” often indicate use of sledgehammer

= QOther good tactics for starting a proof (less powerful, but safer): safe, clarify, standard

= And many more tactics: cases, split ..

= Tactics can be combined e.g. by (induction) (blast | fastforce)+ applies induction then
repeatedly shows the subgoals using either blast or fastforce

INDUCTION

® [nductive tactics are well-developed with many options for application.
= The induction tactic tries to figure out what to do automatically:

lemma app assoc: "app (app Xs ys) zs = app Xs (app ys zs)"
apply (induction xs)

apply auto
done
Specify n should be
m Sometimes it can’t, and we need to be more specific universally quantified in

induction

lemma "itlen Xs n = size XS + n
apply (induct xs arbitrary® n rule: list.induct)

apply auto
done ‘\\\\\\\

Specify induction rule to

use
(unnecessary in this case)

USEFUL FEATURES

THE ISABELLE AFP

= A significant archive of (refereed) formalised mathematics and computer science concepts.
= More of an “archive” than a constantly modified “library”

m https://www.isa-afp.org/

= [t can be easily imported into a local instance of Isabelle by adding it as a component, see here:
https://www.isa-afp.org/help/

= QOver 4.5 million lines of code across 894 entries - and still growing|!

I Size of the AFP in # of entries
900

800

700

600 |
500 |
400 |
300 |
200 |
100 | lI

2004 2005 2006 2007 2008 2008 2010 2011 2012 2013 2014 2015 2016 2017 2018 2018 2020 2021 2022 2023 2024 2025

o

o

o

o

o

https://www.isa-afp.org/
https://www.isa-afp.org/help/

SLEDGEHAMMER

Problem + 1000s of
facts/thms

Generated
Proof(s)

=

AUTOMATED
THEOREM PROVERS

E
SPASS
Vampire
Z3
Cvc

SLEDGEHAMMER

2 |Llemma add commute: "add m n = add n m" u Slmp“fy the gOa| and break dOWﬂ IntO
apply (induction n) .
EEEES nasuc e pieces

by (metis add.simps(2)) (* Sledgehammer generated proof: Metis is a proof tactic, often generated py Sle¢

= Sledgehammer doesn’t prove the
goal, but returns a “proof” which is a
call to metis, smt, blast, auto etc...

Provers: cwc5 verit 23 e spass vampire zipperposition - Isar proofs /] Try methods - | Apply | Cancel Locate 00 | v

e found a proof...

cves found a proof. .. = Translations are not sound, hence

spass found a proof...

eves found a proof .. sledgehammer provided proof may
zipperposition found a proof...
varpngirz: Try this: by (Eetis add.simps(2)) (0.0 ms) not Work When |nserted_

verit found a proof...
spass: Duplicate proof
cvc5: Duplicate proof

zipperposition: Duplicate proof u Generated prOOfS Can be Ugly/messy

e: Duplicate proof

TR - there are usually cleaner ways!
Done

m For more history: https://lawrencecpaulson.github.io/2022/04/13/Sledgehammer.html

= For a more technical overview: https://www.cl.cam.ac.uk/~Ip15/papers/Automation/paar.pdf (or
many of Jasmin Blanchette’s papers for more recent work).

https://lawrencecpaulson.github.io/2022/04/13/Sledgehammer.html
https://www.cl.cam.ac.uk/~lp15/papers/Automation/paar.pdf

COUNTER EXAMPLE

Nitpick

710

lemma ex2: "vx .dy . PXxXy = dx. Vy.Pxy"
nitpicklj
oops

Proof state Auto hovering i

Nitpicking formula...

Nitpick found a counterexample for card 'b = 3 and card 'a = 2:
Free variable:
P=(\.)

(a1 := (MAx.)(b1 := False, b; := False, b3 :

az := (Ax.)(b1 := True, bz := True, bs :

Skolem constants:
AX. y = (Ax. _)(a1 :
AX. Yy = (Ax.)(a1 :

True),
False))

b2)
bs)

b3, d2 .
b1, dz .

B« Output Query Sledgehammer Symbols

Quickcheck

o[lemma ex2: "Vx .dy . PXy = dx.Vy.Pxy"
quickcheck |
oops

Testing conjecture with Quickcheck-exhaustive...
' Quickcheck found a counterexample:
P = (Ax. undefined) (a1 := {a2}, a2 := {az})

||+ Output Query Sledgehammer| Symbols

SEARCH: QUERY

T* Set theory examples *)

thm Un_Union_image
o |lemma "([x € AUB . CxUD)=((NxeA.Cx)n(xeB.Cx))ub"
by blast

o |lemma

fixes ¢ :: "real"

shows "finite A = (}i €A . c* fi)=c* (> ieA . fi)"
apply (induct A rule: finite_ induct)

apply auto
apply (auto simp add: algebra simps)
done

Find Theorems Find Constants Print Context

Find: ["_Int _""_Un _" card| ~ | 40 [| Duplicates = Apply | Search:

1002

find theorems
II_ r“] _II

oy e
"card"

found 2 theorem(s):

« Finite Set.card Un Int: finite ?A = finite ?B = card ?A + card ?B = card (?A U ?B) + card (?A 1 ?B)
« Finite Set.card Un disjoint: finite ?A — finite ?B =— ?A N ?B = {} = card (?A U ?B) = card ?A + card 7B

[« Output Query Sledgehammer| Symbols

SEARCH: FINDFACTS

FindFacts SEARCH HELP EXAMPLES FEEDBACK ABOUT

dex

Sea rCh default (Isabelle2024 / AFI

-

ource Code

small_step

@ FILTER

Drill-down Facets

Fity Kind D G https://search.isabelle.in.tum.de/

Session ConcurrentIMP (6) HOL-IMP (18) IMP2 (7) IMP_Noninterference (1)

CIMP_lang (1) CIMP_veg (5) Def_Init_Small (4) Definitions (1) Finite_Reachable (1) Semantics (7)

small_Step (10) Types (3) OR
Local Database with Isabelle2025

Source Theory

32 Blocks Found

isabelle find_facts_server -p 8080 -o find_facts_database_name=isabelle

IMP2.Semantics
fun small_step :: "program = com x state — com x state" where
"small_step n (x[i]::=a,s) = Some (SKIP, s(x := (s x)(aval i s := aval a s)))"
| "small_step n (x[]::=y,s) = Some (SKIP, s(x := s y))"

SEARCH: SERAPIS
S \% Menu~ | Keywords

[Any fact ~| [Method 8 (Hierarchical Concept v |

Welcome to SErAPIS

SErAPIS (“Search Engine by the ALEXANDRIA Project for ISabelle”) is a research search engine for the Isabelle 2021 and Archive of Formal Proofs 2021 libraries.
The main objectives of SErAPIS are:

« to provide search functionality for Isabelle users that does not rely on syntactically complex pattern matching. Instead, SErAPIS is “concept-oriented”: the search engine tries to un:
the mathematical ideas and topic behind a user's enquiry.

« to provide search that doesn't rely on the loaded libraries or theories at each session. SErAPIS searches all libraries and AFP using a pre-computed index.

« to enable research in Isabelle search. We aim to build a data set that will allow researchers to develop and evaluate retrieval models for mathematical facts in Isabelle.

In order to meet the above objectives, we store some cookies and collect anonymised information. Please see our privacy statement here.

We have prepared two short videos to get you started with using SErAPIS:

https://behemoth.cl.cam.ac.uk/search/
Note: Last AFP Index was in 2021

https://behemoth.cl.cam.ac.uk/search/

OTHER COOL FEATURES

Code Generation

Document Preparation

Lifting and Transfer

Eisbach => Proof Method language

Polymorphism (Type classes) and a powerful module system (Locales)

N

TOMORROW

NEXT TIME...

= Example Class:
= Get started with Isabelle: Logic and function proofs
= Test out sledgehammer for yourself
= Try out different tactics
® Gain familiarity with Isabelle tools

= Next Lecture

= Starting on modularity!
= Finish off your “tour” overview of Isabelle with the Isar proof language and more advanced types

= Introducing type classes and locales

= To come... more advanced case studies in mathematics and program verification!

	Default Section
	Slide 1: Lecture 1: Introducing Proof Assistants & Isabelle/HOL Modular Proofs in Isabelle HOL
	Slide 2: Course OVERVIEW
	Slide 3: Pre-Requisite Knowledge
	Slide 4: A Disclaimer ….
	Slide 5: Course Resources
	Slide 6: Lecture 1 Overview

	Intro to Proof Assistants
	Slide 7: Introduction To Proof Assistants
	Slide 8: Proof Assistants
	Slide 9: Why Formalise?
	Slide 10: Why Formalise?
	Slide 11: Why Formalise?
	Slide 12: Why Formalise?
	Slide 13: Why Formalise?
	Slide 14: Proof Assistant Components
	Slide 15: Some History
	Slide 16: The Isabelle Proof Assistant
	Slide 17: The Isabelle Proof Assistant
	Slide 18: Isabelle Overview
	Slide 19: Isabelles Family of LOGICS
	Slide 20: Isabelle/HOL Foundations
	Slide 21: Basic Types / Terms / Functions
	Slide 22: Terms
	Slide 23: Isabelle’s Meta LOGIC
	Slide 24: Editors
	Slide 25: Isabelle Jedit
	Slide 26: Isabelle VSCODE
	Slide 27: Introduction BY Example
	Slide 28: Functions/Datatypes
	Slide 29: Datatypes
	Slide 30: Functions & Definitions
	Slide 31: Tactics
	Slide 32: AUTO VS SIMP
	Slide 33: More Rewriting
	Slide 34: Variations on Simp/Auto
	Slide 35: Simp Trace
	Slide 36: More TACTICS
	Slide 37: Induction
	Slide 38: Useful Features
	Slide 39: The Isabelle AFP
	Slide 40: Sledgehammer
	Slide 41: Sledgehammer
	Slide 42: Counter Example
	Slide 43: Search: Query
	Slide 44: Search: FindFACTS
	Slide 45: Search: SERAPIS
	Slide 46: Other Cool Features
	Slide 47: Next Time…

